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we are with and support our research.

Let's let them know by adding their names

and logos here.

The augmentation method proposed by [1] is presented as pseudo-code here. The first is to find the

remaining l-cuts in the graph. The l-cuts represent the vulnerable places in the graph. The details

of the algorithm to find l-cuts can be found in [1]. Sequentially, the l-blocks and l-leaves will be

correspondingly found. These can be seen as the shores of the disconnected edges, where we need

to consider how to increase the resilience by augmenting more edges that connect these shores. 

 Accordingly, lines 8-13 is to find the edge with minimal cost to "double ensure" the disaster will

not isolate a node if it only disconnects a single edge. 

The scheme S is composed of up to four parameters of different types. It is used to adjust the

functionality of the functions of the algorithm, namely a parameter specifies how the end-node

subsets for e (V1 and V2) are selected. a parameter specifies the set of l-cuts that passed to

subroutine FindShortestEdge, a parameter modifies the way that the cost of an edge is defined, and

two miscellaneous scheme options. 

Results Figure 1  Example of an l-augmentation of an embedded graph.
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Introduction
Much of society’s infrastructure can be modelled by

networks, including Wide Area Networks, the NBN

and major road networks. It is crucial to ensure that

these networks do not become disconnected as a

result of natural disasters (eg., earthquakes,

tsunamis, and bushfires) or malicious attacks. The

disconnection of these networks can have significant

negative impacts on the basic functioning of society.

Thus, increasing a networks' resilience against these

types of failures is of great importance.

Recent work by Andres-Thio et al.[1] proposed an

augmentation method that improves the resilience of

a network against natural disasters, where the

disaster is defined as a translation of an open

horizontal line segment that intersects the network.

The corresponding intersected edges of the graph are

considered to be disrupted or destroyed. The

augmentation algorithm by Andres-Thio et al.

significantly improves the resilience of networks, as

demonstrated through extensive computational

experiments. However, the computational cost is

relatively high and the solutions are not guaranteed

to be optimal. The purpose of this project is to

improve the algorithm in [1] by finding an exact

polynomial-time algorithm for the problem based on

dynamic programming.

Research Problem
A network is defined as G = (V, E), which is an

arbitrary connected planar graph with a straight-line

plane embedding. A disaster is defined as a

translation of an open horizontal line-segment D of

length l in the plane. If p is the midpoint of a given

disaster D, then we say that D is centred at p. If an

edge e of G intersects D, D is considered to disrupt e.

We think of every vertex of G as being protected,

that is if D only intersects an edge e at one (or both)

of its endpoints, then D does not disrupt e. A disaster

D is said to disrupt a given edge set if it disrupts every

element of that edge set. The aim then is, given a

graph G, find a set of edges of minimum total length

that we can add to G so that no set of edges that are

disrupted by a single disaster will disconnect G. This

is called the augmentation problem on G. We solved

this problem by designing an algorithm based on

dynamic programming which employs various

structural properties of planar graphs.
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Methods

Figure 1 demonstrated the process of the augmentation process of a connected graph. On the left of the

figure, it represents an input graph G and a representative disaster disrupting a cut-set incident to node x.

The diagram on the right shows an augmentation of G where an edge has been added joining nodes x and y.

Here e avoids certain regions associated with cut-sets of G.

There are five l-cuts in G and five corresponding regions. If e were to properly intersect one of these

regions, for example, the top region D, then some disaster would be able to simultaneously disrupt both e

and the cut-set incident to x, meaning that the graph generated by adding e to G would not be l-resilient.  
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Figure 2  Augmentation and examples of cases (ii) (iii) and (ib) of the DP Approach

 

The algorithm of the DP approach to the 2-connected augmentation problem

 

In case (ii), we find the vertex that is a cut vertex, and all other vertices in W[s, t] are

descendants. Therefore, there is no edge incident to a non-descendant of Ps in W[s, t],

and Ps cannot be satisfied in W[s, t]. 

In case (iii), since s does not have descendants, the edge set corresponding to C[s, t]

either has no edge incident to Ps or it has an edge between Ps and some descendant Pk

of a cut vertex pc in W[s, t]. In the former case, we have C[s, t] = C[s+1, t] since the

edge set satisfies all cut vertices relative to W[s+1, t]. In the latter, the edge {Ps, Pk}

creates a cycle satisfying the group of descendants containing the vertex for every cut

vertex in W[c, k]. It divides F into two faces, whose facial walk contains Ws,k (resp.,

W[k, t]). Every group still needs to be satisfied in either of the two faces.

In case (iv), all non-descendants of ps in Ws,t are collected in the set. In particular,

there exists no edge in the edge set between a vertex in Ws, I and Wj,t. We can

partition the edge set into small edge sets such that they each contain only edges

between vertices in Ws, i, Wi,j, and Wj,t respectively, each of them being the minimum-

weight set that satisfies the groups of descendants in their respective subproblems. The

edges in E1, E2, E3 cannot cross since they correspond to edge-disjoint walks in the

walking face. Thus, we have C [s, t] = C [s, i] + C [i, j] + C [j, t] + f (i, j).

We applied the idea of the DP algorithm proposed in [2] as shown left to the augmentation

algorithm.

Related
Literature

Many thanks to the School of Maths and Stats at the University of Melbourne for this

opportunity. I’d also like to thank my supervisor, Dr. Charl Ras, for his guidance and many

helpful conversations during the program.

Acknowledgement


