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Motivation

Consider an office building with a single elevator that has 1 ≤
n ≤ N floors and a ground floor. People arrive to each floor

randomly intending only to travel from their respective floor

to the ground floor [1].

A natural question about this system is how to operate the

elevator (design a service policy) in a way that reduces the

expectedwaiting times of arrivals and ensures that the lengths

of the queues on each floor remain stable.

This poster explores different circumstances for which four

different service policies are stable and in what circumstances

different policies are more efficient than others.

The model

Tomakemattersmore concrete, imagine the same office build-

ing as above but the building contains only 5 floors and a

ground floor. Additionally, people arrive to each of the 5 floors
uniformly.

Figure 1. A representation of the elevator system.

Customers arrive to each of the 5 floors uniformly

according to a Poisson arrival process with rate λi,

i ∈ {1, 2, 3, 4, 5}.
Customers only intend to go from the floor they arrived at

the ground floor.

The elevator operates on a first come first serve basis,

where it will always move towards the next arrival.

The elevator takes time c to move between adjacent

floors, takes time a to open its doors, and time b to close

its doors with a + b + c = D

The capacity of the elevator is determined by the service

policy.

Service policies

Four service policies were considered and adapted to the

model for simulation.

1. M/G/1: The lift moves from the ground floor to the

next arrival, only takes that arrival and heads straight

back to ground floor.

2. M/G/20*: The lift moves from the ground floor to the

next arrival, takes the first 20 arrivals on that floor and

heads straight back to the ground floor.

3. M/G/∞*: The lift moves in the same way as the

previous two policies but takes everyone on the floor.

4. Checksfloors20 (CF20): The lift moves from the ground

floor to the floor of the next arrival and takes up to 20

arrivals from that floor, if there are less than 20 arrivals

on that floor the elevator checks the floor below it and

fills the remaining spots, it repeats this until it reaches

ground floor.

Method

The main method used for simulationwas discrete-event sim-

ulation. Simulationswere carried out using Pythonwhere var-

ious packages were used, most notably SimPy, to handle the

discrete-event simulation. Additionally, each simulation was

run with approx. 750, 000 arrivals, taking approx. 50 minutes .

M/G/1 as a baseline

An analytical bound for the queue stability of theM/G/1 pol-

icy is given by ρ =
∑5

n=1 2λn(a + b + nc) < 1 (1) [1].

To ensure the accuracy of the simulation, the simulation was

first tested by simulating the M/G/1 policy and checked to

see that queue stability was in-fact bounded by (1).

As seen below in Table 1, as ρ → 1 the expected waiting time

of any arrival starts to increase exponentially. As ρ ≥ 1 the

expected waiting times become very large and indicates the

queue lengths are becoming unbounded. Additionally, when

ρ ≤ 1 the expected waiting times remain quite small, indicat-

ing that the bound is at 1.

D
∑5

n=1 λn ρ Expected waiting time

0.065 5.00 0.950 1.940

0.068 6.70 1.025 131.000

0.068 5.00 1.050 235.926

0.068 6.70 1.193 793.690

0.068 7.75 1.300 1136.764

Table 1. Simulated results of theM/G/1 policy adapted to the model using discrete-event

simulation.

M/G/20* and M/G/∞

Initial results of simulations indicate that the M/G/20* and

the M/G/∞* policy increase the efficiency of the system in a

non-linear way.

M/G/20*

In the case λ1 = λ2 = λ3 = λ4 = λ5 simulated results shown

in Table 2 indicate the queue lengths are stable when ρ ≈ 23.
Additionally, since the capacity has increased by 20 but the

value of ρ ≈ 23 this suggests that the increase in efficiency is

non-linear.

D
∑5

n=1 λn ρ Expected waiting time

0.510 12.50 21.000 8.4

0.545 12.50 22.720 84.6

0.500 15.00 25.000 425.550

Table 2. Simulated results of the M/G/20* policy with λ1 = λ2 = λ3 = λ4 = λ5
adapted to the model using discrete-event simulation.

However, when λ1 = λ2 ≥ λ3 = λ4 = λ5 the policy becomes

stable for larger values of ρ than previously. Therefore, the

policy would be more optimised for a system that has faster

arrivals on the earlier floors.

D
∑5

n=1 λn ρ Expected waiting time

0.500 11.00 28.33 10.88

0.510 31.00 38.30 10.24

0.510 36.00 45.00 779.70

Table 3. Simulated results of the M/G/20* policy with λ1 = λ2 ≥ λ3 = λ4 = λ5
adapted to the model using discrete-event simulation.

M/G/∞*

A consequence of increasing the capacity of the lift to ∞ is

that it seems to be stable for any values of parameter set

{a, b, c, λ1, λ2, λ3, λ4, λ5}.

D
∑5

n=1 λn ρ Expected waiting time

15.000 35.00 1750.00 142.71

30.000 20.00 2000.00 248.63

30.000 25.00 25000.00 248.55

45.000 25.00 3750.000 374.000

Table 4. Simulated results of the M/G/∞* policy with λ1 = λ2 = λ3 = λ4 = λ5

CF20

The next logical elevator policy to test is the CF20 policy,

where the lift picks up passengers on its way to ground

floor.

In the case λ1 = λ2 = λ3 = λ4 = λ5 simulation results

in Table 5 indicate the queue lengths are stable when ρ ≈
32 and the average waiting time is bounded, suggesting a

significant improvement to the M/G/20* policy.

D
∑5

n=1 λn ρ Expected waiting time

1.018 9.00 30.300 21.200

0.905 10.000 31.400 17.179

1.018 10.000 33.710 146.000

Table 5. Simulation results of the CF20 policy when λ1 = λ2 = λ3 = λ4 = λ5 .

However, when λ1 = λ2 ≥ λ3 = λ4 = λ5 results from Table

6 show the expected waiting time get significantly larger

for a smaller value of ρ ≈ 22 , suggesting the queue lengths

have become unstable and the policy is less efficient than

the M/G/20* in this case.

D
∑5

n=1 λn ρ Expected waiting time

0.800 11.00 22.800 185.685

0.900 11.00 26.300 663.818

1.018 12.000 33.120 1374.800

Table 6. Simulation results of the CF20 policy when λ1 = λ2 ≥ λ3 = λ4 = λ5 .

If λ1 = λ2 = λ3 ≤ λ4 = λ5 the policy becomes much more

efficient and the system is stable at ρ ≥ 193.

D
∑5

n=1 λn ρ Expected waiting time

1.018 12.000 47.800 6.551

1.018 24.000 102.220 6.450

1.018 44.000 193 6.510

Table 7. Simulation results of the CF20 policy when λ1 = λ2 = λ3 ≤ λ4 = λ5 .

Conclusions and conjecture

Below Table 8 provides simulated bounds for various sit-

uations. Results indicate that for different values of

{λ1, λ2, λ3, λ4, λ5} different policies become more efficient

and it is unlikely that any one policy strickly dominates an-

other.

Service policy constant λi Lower weighted Upper weighted

M/G/1 1 1 1

M/G/20* 23 40 20

M/G/∞* ∞ ∞ ∞
CF20 32 21 193

Table 8. Simulated bounds for each policy at given weights of λi, i ∈ {1, 2, 3, 4, 5}

Conjecture

Consider the M/G/∞* policy, where the elevator has ∞ ca-

pacity but instead of there being 5 floors there is only 1. If

the elevator took at an arbitrary slow speed to move between

adjacent floors, open its doors and close them, say any ε > 0
would the queue lengths become unstable?

The state space of this system can be thought of as Z which

is the number of people in the queue at any point in time.

Since the number in the queue becomes 0 every 2ε time units

the system always returns to state 0 within a finite amount of

time, implying the policy is stable.

What if there were 5 floors? Results from my simulations

of the M/G/∞*policy indicate that there is no bound and

in-fact the queue lengths will be stable for any values of

{a, b, c, λ1, λ2, λ3, λ4, λ5}.

What about if there were 10 floors? or 20? or even 10000000
floors? Would the queue lengths be stable? Intuitively, it feels

like there would be a certain number of floors for which the

queue lengths would become unstable but from my simula-

tions it seems otherwise. Therefore, my conjecture is that for

any finite number of floors and any ε > 0 the queue lengths

will be stable.
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