Simulating score distribution of vervet monkey populations using linear continuous-time branching process

Ying Tan, with Le Zeng, supervised by Sophie Hautphenne

The University of Melbourne

Motivation

Dominance hierarchy is common in many animal populations, including vervet monkeys (Chlorocebus pygerythrus). Under such conditions, a higher ranked individual gets access to more resources and mating opportunities. Female ranks depend on kinship at birth and can be later elevated or downgraded as a result of conflicts [1]. A continuous-time branching process is used to simulate the evolution of score distribution of female monkeys.

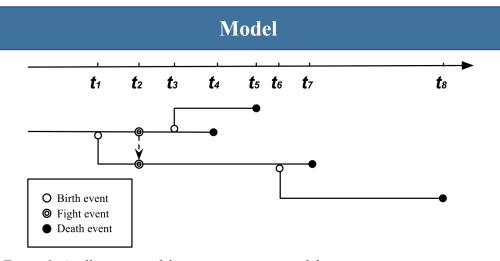


Figure 1. An illustration of the continuous-time model

Birth event:

Death event:

- $\lambda_1, \lambda_2, \lambda_3$: birth rates for monkeys in rank 1 (low), 2 (mid) and 3 (high)
- μ_1, μ_2, μ_3 : death rates for monkeys in rank 1 (low), 2 (mid) and 3 (high)

Fight event:

- φ_1, φ_2 and φ_3 denote the fight rates for monkeys in rank 1, 2 and 3 respectively
- A monkey initiates a fight, selected based upon the fight rates of . all individuals. The opponent is then selected based on **f** (*fighting*) *probability*) of all pairs (with the initiator) in the population.
- The outcome is modelled by a Bernoulli trial with the parameter • **p**_{initiator} (winning probability of the initiator).
- The elo-ratings* of both monkeys are updated accordingly.

 $Rating Difference = Renormalised Rating_{opponent} - Renormalised Rating_{initiator}$

$$f = \frac{1}{1 + 10^{|RatingDifference|}} \qquad p_{initiator} = \frac{1}{1 + 10^{RatingDifference}}$$

Elo-rating [2]:

Assumption: daughters inherit the ratings of mothers at birth

- k = 100 (a constant that defines the score increments after a fight)
- p is the winning probability of the higher-rated individual Higher-rated individual wins:

$$\label{eq:WinnerRating_new} \begin{split} WinnerRating_{old} &= WinnerRating_{old} + (1-p) \times k \\ LoserRating_{new} &= LoserRating_{old} - (1-p) \times k \end{split}$$

Lower-rated individual wins:

Results

Rank classification:

Based on percentiles of elo-ratings: the top 1/3 classified as rank 3 (high), middle 1/3 as rank 2 (middle), bottom 1/3 as rank 1 (low).

Fixed parameters:

- $\lambda_1 = 1.5, \lambda_2 = 1.3, \lambda_3 = 1.8$ (extracted from dataset of vervet monkeys in South Africa since 2010)
- $\mu_1 = 1.2, \mu_2 = 1.1, \mu_3 = 1.1$ (set to achieve an almost critical model)

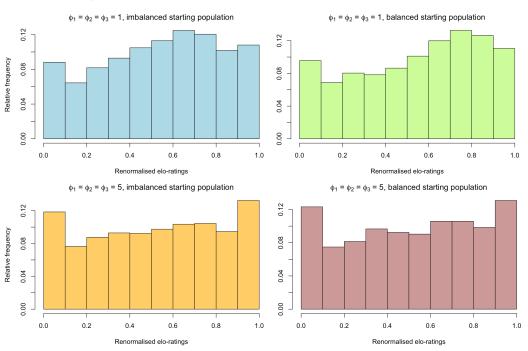


Figure 3. The distribution of elo-ratings of monkey populations with different initial configurations at the end of time unit 5, starting population = 6, of 500 simulation trials. Balanced renormalised ratings = (0, 0.2, 0.4, 0.6, 0.8, 1). Imbalanced renormalised ratings = (0, 0, 0, 0, 0, 0).

Observations:

- Generally, the scores tend towards the higher values.
- Populations with a higher fight rate tend to produce more uniformly distributed scores.
- However, the simulations end in 5 time units, meaning that longterm behaviours cannot be observed from the graphs.

Interpretation:

- Peak frequency towards the higher end: high-ranked monkeys give births to more children (born with high ratings), low fight rates enhance this pattern, given infrequent changes in scores.
- Small peaks at the extremes $(\varphi_1 = \varphi_2 = \varphi_3 = 5)$: smaller population sizes by the end of time unit 5, hence relatively more frequent ratings of 0 and 1 (since these ratings exist in every trial).

Extensions

 $WinnerRating_{new} = WinnerRating_{old} + p \times k$ $LoserRating_{new} = LoserRating_{old} - p \times k$

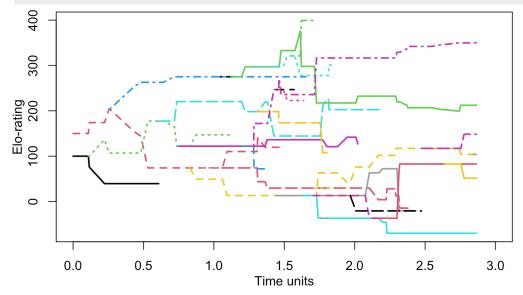


Figure 2. The evolution of elo-ratings of monkey population in a single simulation, starting population = 2, starting ratings = (100, 150), $\varphi 1 = 1$, $\varphi 2 = 2$, $\varphi 3 = 3$

Photograph: by Bernard Dupont, distributed under a CC BY-SA 2.0 license

- To fit the model using real-life dataset to study the dynamics of population sizes.
- Introduce settings that closely mimic realistic behaviours in monkey population. E.g. fight events followed by the potential death of the loser.
- Track and compare the ratings and population sizes between different monkey families.

References

[1] L. A. Fairbanks and M. McGuire. Age, reproductive value, and dominance-related behaviour in vervet monkey females: cross-generational influences on social relationships and reproduction. Anim. Behav., 34(6):1710-1721, 1986. [2] C. Neumann et al. Assessing dominance hierarchies: validation and advantages of progressive evaluation with Elo-rating. Anim. Behav., 82(4):911-921, 2011.