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Introduction

ground states.

. Consider a set A of spins with state 0 = {0k }kepn Where ok € {—1, 1}. An interaction J;; exists between any two spins (,j € A and an
external magnetic field h; interacts with any spin i € A. The spin glass model is described by the Hamiltonian function

H(o) = —Z]ij-aioj — Z h;o;
ij 1

« The significance arises from its NP-hard nature, closely tied to challenging combinatorial optimization tasks.
« To solve the sampling problem, we rely on Monte Carlo methods like single-spin flip and parallel tempering.
« Along with simulated annealing, we also explore tensor network - an exact algorithm for finding stationary states of lowest energy, or

Single-spin flip Monte Carlo_

« Design a Markov chain Monte Carlo (MCMC) random walker to
sample according to Boltzmann distribution

exp (<142

where T =1.

. Update using Metropolis algorithm: propose a new state ¢ by
flipping a random spin of the current state o and accept 6 with
probability

H(6) — H(a))

Priip =1 A exp (— -

Parallel Tempering

« Embed the actual PDF m(o, 1) to a higher dimensional samp-
ling space m(o, T), where the prominence of local and global
minima is controlled by temperature T.

« Distribute an ensemble of MCMC random walkers across all

temperature levels T; (i=1, ..., n).
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« Within-chain steps: Metropolis updates.

« Between-chain steps: exchange swaps between random pairs
Ti and T; with acceptance probability

1 1
Pswap =1 A exp ((H(Uz’)— H(oj)) (? — ?))
( J

« Independent MCMC random walkers start at a high T (explora-
tory search) and slowly move to lower T (localized search) ac-
cording to the cooling schedule T(t)=Toa! where 0 <a < 1.
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Simulated Annealing

« Perform Metropolis up-
dates at each T to keep
the system close to
equilibrium.
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Tensor Networks _

« Reduce to the cutting problem with graph G = (V,E) and
energy model

Ho(G)= > Wi((1—n)nj+ (1—npn;)— Z win;

(i,))eE

where n; = % is the par-

tition index in the cutting
problem, w; = —2h; is ver-
tex weight, and W = 2Jj; is
edge weight.

« Solve the cutting problem using tensor network contraction.
Ground States Result _
« Generate 60 sets of random J and h.

o Run simulated annealing with To =20 and a = 0.9 over 20
chains, record the proportion of chains that correctly identified
ground energy given by tensor network.

Table 2: Proportion of accurate chains

# spins
Algorithm 5 10 15 20 25 30

Sampling Result

« Generate 50 sets of random J, h, and initial state o.

. Run single-spin flip with 10° steps and parallel tempering with
5x103 steps over 20 chains (T =1, ...,20), both with burn-in
and sample interval of 100 steps.

Table 1: Total variation distance

# spins
Algorithm 5 10 15 20 25

Single-spin flip 0.450 0.551 0.450 0.e61 0.740
Parallel tempering 0.012 0.012 0.008 0.018 0.028

Simulated annealing 1.00 0.98 0.79 0.61 0.57 0.37

Table 3: Running time (in seconds)

# spins
Algorithm 5 10 15 20 25 30

Simulated annealing 0.06 0.08 0.10 0.11 0.17 0.21
Tensor network 0.00 0.04 0.12 0.48 2.46 30.01

Further Extension _

Use approximate tensor network contractions to propose collective
(all-spins) updates, which mitigate the locality problem in Metropolis
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(single-spin) updates.




