Sampling and finding ground states of spin glass models using parallel tempering, simulated annealing, and tensor networks

Kylie Le*, supervised by Stephen Zhang, Yong See Foo, and Michael Stumpf

University of Melbourne

* thuylinh1@student.unimelb.edu.au

Introduction

• Consider a set Λ of spins with state $\sigma = \{\sigma_k\}_{k \in \Lambda}$ where $\sigma_k \in \{-1, 1\}$. An interaction J_{ij} exists between any two spins $i, j \in \Lambda$ and an external magnetic field h_i interacts with any spin $i \in \Lambda$. The spin glass model is described by the Hamiltonian function

$$H(\sigma) = -\sum_{ij} J_{ij}\sigma_i\sigma_j - \sum_i h_i\sigma_i$$

- The significance arises from its NP-hard nature, closely tied to challenging combinatorial optimization tasks.
- To solve the sampling problem, we rely on Monte Carlo methods like single-spin flip and parallel tempering.
- Along with simulated annealing, we also explore tensor network an exact algorithm for finding stationary states of lowest energy, or ground states.

Single-spin flip Monte Carlo

• Design a Markov chain Monte Carlo (MCMC) random walker to sample according to Boltzmann distribution

$$\pi(\sigma, T) = \frac{\exp\left(-\frac{H(\sigma)}{T}\right)}{\sum_{\sigma} \exp\left(-\frac{H(\sigma)}{T}\right)}$$

where T = 1.

• Update using Metropolis algorithm: propose a new state $\hat{\sigma}$ by flipping a random spin of the current state σ and accept $\hat{\sigma}$ with probability

 $p_{flip} = 1 \wedge \exp\left(-\frac{H(\hat{\sigma}) - H(\sigma)}{\tau}\right)$

Parallel Tempering

- Embed the actual PDF $\pi(\sigma, 1)$ to a higher dimensional sampling space $\pi(\sigma, T)$, where the prominence of local and global minima is controlled by temperature T.
- Distribute an ensemble of MCMC random walkers across all temperature levels T_i (i = 1, ..., n).

$$\mathbf{\Lambda}$$

Simulated Annealing

- Independent MCMC random walkers start at a high T (exploratory search) and slowly move to lower T (localized search) according to the cooling schedule $T(t) = T_0 \alpha^t$ where $0 < \alpha < 1$.
- Perform Metropolis updates at each T to keep the system close to equilibrium.

Tensor Networks

• Reduce to the cutting problem with graph G = (V, E) and energy model

$$H_c(G) = \sum_{(i,j)\in E} W_{ij} \left((1-n_i)n_j + (1-n_j)n_i \right) - \sum_{i\in V} \omega_i n_i$$

where $n_i = \frac{1-\sigma_i}{2}$ is the partition index in the cutting problem, $\omega_i = -2h_i$ is vertex weight, and $W_{ij} = 2J_{ij}$ is

- Within-chain steps: Metropolis updates.
- Between-chain steps: exchange swaps between random pairs T_i and T_j with acceptance probability

$$p_{swap} = 1 \wedge \exp\left(\left(H(\sigma_i) - H(\sigma_j)\right)\left(\frac{1}{T_i} - \frac{1}{T_j}\right)\right)$$

Sampling Result

- Generate 50 sets of random J, h, and initial state σ .
- Run single-spin flip with 10⁵ steps and parallel tempering with $5x10^3$ steps over 20 chains (T = 1, ..., 20), both with burn-in and sample interval of 100 steps.

Table 1: Total variation distance

	# spins						
Algorithm	5	10	15	20	25		
Single-spin flip Parallel tempering	0.450 0.012	0.551 0.012	0.450 0.008	0.661 0.018	0.740 0.028		

edge weight.

• Solve the cutting problem using tensor network contraction.

Ground States Result

- Generate 60 sets of random | and h.
- Run simulated annealing with $T_0 = 20$ and $\alpha = 0.9$ over 20 chains, record the proportion of chains that correctly identified ground energy given by tensor network.

Table 2: Proportion of accurate chains

	# spins					
Algorithm	5	10	15	20	25	30
Simulated annealing	1.00	0.98	0.79	0.61	0.57	0.37

Table 3: Running time (in seconds)

	# spins						
Algorithm	5	10	15	20	25	30	
Simulated annealing Tensor network	0.06 0.00	0.08 0.04	0.10 0.12	0.11 0.48	0.17 2.46	0.21 30.01	

Further Extension

Use approximate tensor network contractions to propose collective (all-spins) updates, which mitigate the locality problem in Metropolis (single-spin) updates.

References

- 1. Malcolm Sambridge, A Parallel Tempering algorithm for probabilistic sampling and multimodal optimization, Geophysical Journal International, Volume 196, Issue 1, January 2014, Pages 357–374, https://doi.org/10.1093/gji/ggt342
- 2. Liu, J.-G., Gao, X., Cain, M., Lukin, M.D. and Wang, S.-T. (2023). Computing Solution Space Properties of Combinatorial Optimization Problems Via Generic Tensor Networks. SIAM Journal on Scientific Computing, 45(3), pp.A1239–A1270. doi:https://doi.org/10.1137/22m1501787.