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Introduction
• Consider a set � of spins with state � = {�k}k2� where �k 2 {�1,1}. An interaction J�j exists between any two spins �, j 2 � and an
external magnetic field h� interacts with any spin � 2 �. The spin glass model is described by the Hamiltonian function
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• The significance arises from its NP-hard nature, closely tied to challenging combinatorial optimization tasks.
• To solve the sampling problem, we rely on Monte Carlo methods like single-spin flip and parallel tempering.
• Along with simulated annealing, we also explore tensor network - an exact algorithm for finding stationary states of lowest energy, or
ground states.

Single-spin flip Monte Carlo
• Design a Markov chain Monte Carlo (MCMC) random walker to
sample according to Boltzmann distribution
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• Update using Metropolis algorithm: propose a new state �̂ by
flipping a random spin of the current state � and accept �̂ with
probability
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Parallel Tempering
• Embed the actual PDF �(�,1) to a higher dimensional samp-
ling space �(�, T), where the prominence of local and global
minima is controlled by temperature T.

• Distribute an ensemble of MCMC random walkers across all
temperature levels T� (i = 1, . . . , n).

• Within-chain steps: Metropolis updates.
• Between-chain steps: exchange swaps between random pairs
T� and Tj with acceptance probability
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Sampling Result
• Generate 50 sets of random J, h, and initial state �.
• Run single-spin flip with 105 steps and parallel tempering with
5�103 steps over 20 chains (T = 1, ...,20), both with burn-in
and sample interval of 100 steps.

Table 1: Total variation distance

# spins

Algorithm 5 10 15 20 25

Single-spin flip 0.450 0.551 0.450 0.661 0.740
Parallel tempering 0.012 0.012 0.008 0.018 0.028

Simulated Annealing
• Independent MCMC random walkers start at a high T (explora-
tory search) and slowly move to lower T (localized search) ac-
cording to the cooling schedule T(t) = T0�t where 0 < � < 1.

• Perform Metropolis up-
dates at each T to keep
the system close to
equilibrium.

Tensor Networks
• Reduce to the cutting problem with graph G = (V, E) and
energy model
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where n� = 1���
2 is the par-

tition index in the cutting
problem, �� = �2h� is ver-
tex weight, and W�j = 2J�j is
edge weight.

• Solve the cutting problem using tensor network contraction.

Ground States Result
• Generate 60 sets of random J and h.
• Run simulated annealing with T0 = 20 and � = 0.9 over 20
chains, record the proportion of chains that correctly identified
ground energy given by tensor network.

Table 2: Proportion of accurate chains

# spins

Algorithm 5 10 15 20 25 30

Simulated annealing 1.00 0.98 0.79 0.61 0.57 0.37

Table 3: Running time (in seconds)

# spins

Algorithm 5 10 15 20 25 30

Simulated annealing 0.06 0.08 0.10 0.11 0.17 0.21
Tensor network 0.00 0.04 0.12 0.48 2.46 30.01

Further Extension
Use approximate tensor network contractions to propose collective
(all-spins) updates, which mitigate the locality problem in Metropolis
(single-spin) updates.
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