
Using Finite Difference Method to investigate the
structure of flows in unbounded and confined

geometries
Huynh Tuan Kiet Phan, supervised by Dr. Edward Hinton

2023-2024 Vacation Scholarship Program, The University of Melbourne

Introduction

Many problems in fluid mechanics appear in the form of complex partial

differential equations (PDE) which are hard to find the exact solutions,

especially the non-linear PDE. Thus, one way to overcome the challenge

is to solve it numerically using the finite difference method.

In this poster, we will provide some theoretical basis and solve numeri-

cally the biharmonic equation in different 2-dimension boundary condi-

tions usingMatlab. Two problems we will present include the lid-driven

cavity problem, the stick-slip problem in a rectangular grid.

The Biharmonic equation: ∇4ψ = ∂4ψ

∂x4 + ∂4ψ

∂y4 + 2 ∂4ψ

∂x2y2 = 0

Method/Theoretical basis

The idea of the finite difference method is to divide the rectangular do-

main into a uniformly spaced m by n grid (the distance between 2 neigh-

bor nodes is h) and try to evaluate the value at each node. By doing so

with a small h, we can plot the solution approximately. In this poster,

we denote ψi,j the value at node in row i, column j.

1. Using stencils to approximate linear operators

Our first task is to approximate linear operators such as
∂4

∂x4 ,
∂4

∂y4 ,
∂4

∂x2y2 .

To approximate the operator T , we find some coefficients

αi+1,j, αi−1,j, · · · such that T (ψi,j) = αi+1,jψi+1,j + αi−1,jψi−1,j +
· · · + error(h). This task can be done by setting the target error (eg.

O(h4)) and using the Taylor Series expansions (possibly in 2 dimensions).
For example we have:

∂4ψi,j

∂x4 = ψi−2,j − 4ψi−1,j + 6ψi,j − 4ψi+1,j + ψi+2,j

h4 +O(h2)

Based on the coefficients and the positions of surrounding nodes, we can

introduce the stencil [1 − 4 6 − 4 1] to approximate ∂4

∂x4 .

11 −4 6 −4 1

Similarly, we can approximate
∂4

∂y4 ,
∂4

∂x2y2 and add together in the corre-

sponding position to obtain the stencil for ∇4 as below with the error be

O(h2)

1

1

1 −8 20 −8

−8

−82 2

2 2

1

Figure 1. The 13-point stencil for ∇4.

2. Set up the system of equations for different
boundary conditions

In the simplest case, when the values and their normal derivatives at bound-

ary nodes are known, our task is to find all the inner nodes given the equa-

tions at each node by the above stencils. Hence, it comes naturally that

we try to set up the linear systems Ax = g, where x is a vector storing all
boundary and inner values.

(−1,−1)

(1, 1)

(1,−1)

(−1, 1)

ψ = 0
ψx = 0

ψ = 0
ψx = 0
ψ = 0
ψx = 0

ψ = 0, ψy = 0

ψ = 0, ψy = 1
Initial velocity

∇4ψ = 0

Figure 2. The lid driven cavity problem

However, the equations for nodes in the boundary and those for nodes near

boundary and the central will be different. Hence, it will affect the run time

of the program if we input coefficients using for loop (as MATLAB will

prefer vectorization in stead of for loop in term of run time).

Hence, we use the idea of the tensor product to overcome the challenge:

We will set up a matrix A such that Ax will return the corresponding
derivatives at each node (ie. in the boundary will return the original

value, the inner boundary will return the normal derivatives of the

boundary, and other nodes (i, j) will return ∇4ψ(i, j)).
To do so, we first set up somem×m matrices calledMi to change

every elements in one columns y toMiy, their corresponding
derivatives wrt. y by employing the stencils.

Set up n× n matrices called Ni the same way asM but with the

derivatives wrt. x.

Represents A =
∑

i

Ni ⊗Mi.

3. Solving the linear systems Ax = b using LU
factorization with partial pivoting (LUP)

The target of the LUP is to find the lower and upper triangular matrices

L,U and a permutation matrix P such that PA = LU .

The core idea is at each step, we multiply A withMi in the left

(i = 1 : n− 1) to implement the Gauss-Jordan elimination at each
column.

Note thatMi is easy to inverse just by changing signs of some entries

andMi’s are lower triangular.

In the end we can obtain L = M−1
1 · · ·M−1

n−1, U and P.

The Algorithm works as follow:

Initiation: U = A,P = In (suppose A is a square n× n matrix).

For i=1:(n-1)

max |A(i : n, i|) =0

i=i+1 A(i,i) 6= 0

Mi = In

Mi(i+ 1 : n, i) =

−A(i+ 1 : n, i)
A(i, i)

Find row j st.

A(j, i) 6= 0
swap row i with row j

U = Mi.A
Update the

permutation matrix P

Yes No

Yes No

Figure 3. LU decomposition with partial pivoting

After getting A = P−1LU , we can turn Ax = b into Ux = b′ where

b′ = L−1Pb = Mn−1 · · ·M1Pb and solve it by back-substitution (as U is

upper triangular).

Numerical results

The lid-driven cavity problem

This problem describe a bucket of viscous fluid at the top boundary

moving horizontally to cause flow.

While the top boundary is moving, other sides of the square is

stationary.

The boundary conditions are described as in figure 2.

Figure 4. Contour plot of solution of the lid-driven cavity

The stick-slip problem

This problem describe a flow in an infinitely long tube with the walls

(can think as river), go from very rough (v = 0) to very slippy
(
dv

dy
= 0).

The flow is made by a background pressure gradient from left to right.

(−∞,−1)

(∞, 1)

(∞,−1)

(−∞, 1)

ψ = y
ψx = 0

ψ = (3y − y3)/2
ψx = 0ψx = 0

ψ = −1, ψy = 0

ψ = 1, ψy = 0

ψ = −1, ψyy = 0

ψ = 1, ψyy = 0
x = 0

x = 0

•

•

∇4ψ = 0

Figure 5. The stick-slip problem

This problem is more complex than the lid-driven cavity problem as in

the top and bottom boundary change from ψy = 0 to ψyy = 0 when x
moving from −∞ to ∞.

Further, the geometry is unbounded in the x-direction.

Here is our method:

To overcome the geometry difficulty, we replace ∞ with relatively

large number n such as n = 50, 1000, plot the solution and consider if
the difference is significant.

For changing boundary conditions, we can split matrices

Mi = Mi,1 +Mi,2 to return different derivatives at different columns.

Here are the contour plot for n = 50 and n = 100:

Figure 6. n = 50

Figure 7. n = 100

Comparing the two plot, we can see the only slight difference occurs at

the mid point, where the flow begins to change significantly.

Hence, we can expect the plot for n = ∞ to change more drastically at

the mid point x = 0.

Further Discussion

Instead of using 13-point stencil in figure want, we can try to extend

the stencils to a 7 × 7 grid for more accusation. However, the
symmetry of the matrix A may be destroy so we need to consider

careful scaling to preserve the symmetry.

Instead of using the LU method in figure 3, we can employ iterative
methods such as Jacobi and Gauss-Seidel method to improve the

runtime. However, we still need to balance the trade of between

stability and convergence rate.

By the same method, we can also create the solver for ∇4ψ = g(x, y)
for any known function g. This can be the basis step for solving
non-linear PDE using iterative method. The idea is to come up with the

solution ψ0 for the linear problem, which is near to the non-linear one

with small parameter, then keep solving ∇4ψn+1 = g(ψ) for closer
solutions. To account for the convergence rate, the method of

under-relaxation might be employed.

Acknowledgement

The Vacation scholarship program have offered me the chance to get

the taste for research and explore further my interest in mathematics.

I would like to thank my supervisors, Dr. Edward Hinton and Dr.

Douglas Brumley for their patience, useful advice and discussion.

References

[1] Long Chen.

Programming of finite element methods in matlab.

2018.

[2] John Lambert.

Direct methods for linear system solving.

2019.

[3] Jesse J Taylor West.

Flows of viscoplastic fluids.

2023.

	Introduction
	Using stencils to approximate linear operators

