
Finding Maximal Prime Gaps

Oliver Tan Lucas Teoh Andrew Wang

July 20, 2020

1 Introduction

A prime number, p, is a positive integer that is only divisible by 1 or p (itself).
In this paper, we examine a method, using Python code, of finding the maximal
prime gap, that is, the largest difference between two consecutive prime numbers
pn and pn+1, such that pn, pn+1 < 10x, x ∈ N . Section 2 explores the basic
outline of such a function and the fundamental steps required in developing an
algorithm to find prime gaps. Section 3 explores the Miller-Rabin primality
test and demonstrates how it can be implemented to increase efficiency. Section
4 explores how the Logarithmic Integral function is used in conjunction with
various other functions to simplify the search for a maximal prime gap. Section
5 displays the final algorithm and discusses further potential optimisations and
limitations.

2 Development of the Algorithm

In this section we demonstrate the development of the base outline of a Prime
Gap finding algorithm, as well as the further alterations that were made to
increase its versatility and efficiency.

2.1 Constructing a base formula

To begin, the root steps in finding a prime gap less than 10x needed to be
outlined, and they were as follows:

1. Generate a list of primes less than 10x

2. Check the difference between each successive pair of primes and record
the largest difference

3. Return the largest difference

The premise of this initial method was not to immediately generate the perfect
method, but rather to set a base algorithm to build from. From these three
steps, we constructed, using Python code, the first algorithm.

1

def GetPrime(n):

primeList = [2]

num = 3

while len(primeList) < n:

for p in primeList:

if num % p == 0:

break

else:

primeList.append(num)

num += 2

return primeList [-1]

def PrimeGap(n):

return(GetPrime(n+1)- GetPrime(n))

q = 1

t = 0

while GetPrime(q) < 10**x:

if PrimeGap(q)>PrimeGap(t):

t = q

q += 1

Despite the inefficiency of this initial method, it provided a solid foundation
on which to build on. As there were only two main steps - the prime finding
and the prime gap finding, these were to be the main focus for optimisation and
improvements.

2.2 Improving prime finding

The immediate shortcomings of this method lay within the fact that as x in-
creased, the number checks would increase exponentially, resulting in a very
quick growth in computing time.

def GetPrime(n):

primeList = [2]

num = 3

while len(primeList) < n:

for p in primeList:

if num % p == 0:

break

else:

primeList.append(num)

num += 2

return primeList [-1]

This initial method of obtaining prime numbers involved shovelling through
every odd number and searching for a divisor in the list of all primes. This

2

involved largely numerous checks per number, and so it was an incredibly slow
method that was only able to efficiently produce a list of primes up to 105. As
such, a significantly better method was needed.

This method came to light as the Miller-Rabin primality test, which in simple
terms, is more complex yet optimised prime determiner. The Miller-Rabin test
will be explored in further detail in Section 3, however its most notable and
beneficial trait was that the number of checks required to determine whether
any given number was prime or not, remained constant. This allowed for a
more improved algorithm, capable of determining the primality of even larger
given numbers without increasing the number of checks required. Having now
found a time-effective method of obtaining prime numbers, the next step was
to improve the method for finding prime gaps.

2.3 Improving prime gap finding

In the same way that proved a hindrance in obtaining the initial set of primes,
the number of primes still remained fairly substantial for higher values of x.

def PrimeGap(n):

return(GetPrime(n+1)- GetPrime(n))

q = 1

t = 0

while GetPrime(q) < 10**x:

if PrimeGap(q)>PrimeGap(t):

t = q

q += 1

This code was incredibly inefficient and wasteful, as not only did it have to comb
through every single pair of primes to find the maximal gap, but with each pair
of primes, it would generate a completely new list to pull the primes from. This
long and arduous process could however, be removed, with the introduction
of a new and significantly improved prime finding algorithm allowing for more
options to be easily implemented in conjunction with the Miller-Rabin test.

In order to avoid the drawback of having to check every consecutive pair
in the potentially hugely long list of primes, rough boundaries had to be made
around areas where the maximal prime gap was most likely to be found. This
is explored in further detail in Section 4, where a formula suggested by Marek
Wolf is discussed. This formula utilises the Logarithmic Integral function and
is able to produce an approximate number around which to look for such a gap,
greatly reducing the range of numbers required to check.

3

3 The Miller-Rabin Primality Test

The Miller-Rabin primality test [5], constructed by Gary L. Miller in 1976 and
refined by Michael O. Rabin in 1980, is an probabilistic algorithm used to ap-
proximate if a given number is prime or not. Using specific data points, this
algorithm becomes deterministic below a certain threshold, one that is above
any of x that we would need to equate.

3.1 Explaining the test

Lemma 3.1.1. No square roots of 1 modulo p exist, such that p is prime and
p > 2, other than those congruent to either 1 or -1 mod p.

Proof. Suppose:

x2 ≡ 1 (mod p)

It then follows, by the difference of perfect squares,

(x− 1)(x+ 1) ≡ 0 (mod p)

By Euclid’s Lemma, p must divide either x− 1 or x+ 1, and so it follows that
x is congruent to either 1 or −1 modulo p.

Now, for any prime number n > 2, it follows that n − 1 is even. By taking
the largest power of 2 from n − 1, we can now say n − 1 = 2sd, where d and s
are both positive integers, and d is odd. We say that for any a in Z/n, either

ad ≡ 1 (mod n)
or

a2
rd ≡ −1 (mod n)

where 0 ≤ r ≤ s− 1.
Fermat’s Little Theorem states

an−1 ≡ 1 (mod n)

for some prime number n. By Lemma 3.1.1., if we continually take square roots
from an−1, we will end up with either 1 or −1. If we get −1, then we see that
the second equality holds. If we do not get −1, then we are left with ad, which
will hold true to the first equality if n is indeed prime.

However, rather than checking every value of a to see if this holds for all, the
Miller-Rabin test works with the opposite idea, that is, if we can find a value of
a, such that

ad 6≡ 1 (mod n)
and

a2
rd 6≡ −1 (mod n)

then n is not prime.

4

3.2 Reliability

The overall correctness of this test on a large scale is reliant on the Riemann
Hypothesis, which is at the time of writing, unproven. This is largely in part
due to the existence of strong liars, which are values of a with which the
equations hold, despite n being composite. However, there exist determinis-
tic variants, which allow for only a specific set of a values to be tested, when
n is within a certain limit, and these have been proven for n values up to
n < 3, 317, 044, 064, 679, 887, 385, 961, 981, a 25 digit number. Given that the
largest known prime gap is 20 digits long, using the Miller-Rabin algorithm for
this specific task is acceptable, as the numbers being tested will not exceed its
current known deterministic bounds.

3.3 Implementation into code

a_list = [2,3,5,7,11,13,17,19,23]

def MillerRabin(n):

q = n-1

r = 0

while True:

q = q>>1

r += 1

if q&1 == 1:

break

for a in a_list:

check = True

m = pow(a,q,n)

if m == 1 or m == n-1:

check = False

else:

for _ in range(c):

m = pow(m,2,n)

if m == n-1:

check = False

if check:

return False

return True

The code begins with assigning q to the value n−1. As it moves into the while
loop, q is converted into binary, and all powers of 2 are removed, leaving only the
odd number, d. For each square root, the variable r (the r value) also increases.
From here the code references a list, a list. This list can alter based on the n
value that needs to be checked, but since we will not be exceeding 1019 with any
prime numbers, we can settle for the list shown, which has been proven to be
enough to test n < 3, 825, 123, 056, 546, 413, 051. As the Miller-Rabin test looks
for the inequalities, if the check variable is found to be false, for all a values
in the set, the algorithm can output that n is indeed prime, but if the check
variable remains true for just one a value, then n is known to be composite.

5

4 Estimating Prime Gaps

This section mainly explores some conjectures by Marek Wolf [14] and Daniel
Shank which allow us to find an approximate range in which the maximal prime
gap less than 10x can be found. We will also explore the numerous other well
established mathematical functions utilised in this approximation, and we will
demonstrate how these are then implemented into the algorithm as code.

4.1 Wolf’s conjecture

Wolf conjectures [2] that the first occurring largest prime gap G(n) such that
both primes are less than n occurs at approximately

G(n) ∼ n
π(n) (2 ln(π(n))− ln(n) + ln(2c2))

where π(n) is the prime counting function, and c2 ≈ 0.660 is the twin primes
constant.

4.2 Shank’s conjecture

Let p(n) be the first prime of a pair of consecutive primes with a gap n. Shank
conjectures [13] that

p(n) ∼ exp(
√
n)

where exp(n) = en. In combination with Wolf’s conjecture, Shank’s conjecture
can be used to find the approximate location of the maximal prime gap found
using Wolf’s conjecture.

4.3 Mathematical Functions of Note

4.3.1 The Prime Counting Function

The Prime Counting Function[6][12], π(n), is a function that gives the number
of primes that exist less than or equal to n. It has many approximated formu-
las, however one of its most significant approximations is stated by the prime
counting theorem:

π(n) ∼ li(x)

where li(x) is the logarithmic integral function.

4.3.2 The Logarithmic Integral Function

The Logarithmic Integral Function [4][11], li(x), is defined as

li(x) =
∫ x
0

dt
ln t

for all {x|R∗
+\1}.

6

There exists a unique constant, µ = 1.4513692348... called Soldner’s constant
[11] where li(x) = 0. This allows us to rewrite the function as

li(x) =
∫ x
µ

dt
ln t

for x > µ. It is this function that we will apply into our Python code of Wolf’s
conjecture, instead of the prime counting function, as this still works within
out range of numbers, and is a simpler, less programmatically expensive system
that produces a very similar result.

4.4 Implementation into code

def li(x):

n=10000

t=0

d=0

dx=(x-2)/n

for k in range(n):

d=2+k*dx

t+=dx*(1/ math.log(d))

return t + 1.05

po = pow(10,x)

G = math.floor(po/li(po)*(2* math.log(li(po))-math.log(po)+0.277))

g = math.floor(math.exp(math.sqrt(G)))

To calculate the area of an integral, we know to add numerous slices of minimal
width. By assigning the variable n to be 10000, we have now set the number of
rectangular slices we will use to calculate this area. We also see that the value
dx, which would usually be calculated as simply x/n, has now been changed
to (x − 2)/n. This is done in order to avoid encountering any asymptotes or
singularities which would otherwise disrupt the code. Ideally, Soldner’s constant
would be subtracted, however it would be unnecessarily exact so we round up
to 2. Later, within the for loop, we see that we add 2 onto the variable d. As
can be seen in the line of code following this, we will be taking the log of d, and
so we add the 2 back on in order to avoid taking the log of ∞ or 1. The for

loop allows us to take the sum of the areas of all the slices, and so we end the
function by returning this value. We also add on 1.05 ≈ li(2) to make up for the
area lost initially when we subtracted 2 from x in order to avoid asymptotes.

We now translate Wolf’s conjecture into code, using the logarithmic integral
function as a substitute for the prime counting function. We use 0.277 as an
approximation for ln(2c2), which is acceptable as we are not looking for an
exact value from this test. We also apply the floor function to round to a whole
number.

Finally we apply Shank’s conjecture, and end up with an approximate num-
ber to which we can start searching. Because Shank’s conjecture is an underes-
timate, there is no chance of us skipping over a large prime gap.

7

5 The Final Algorithm

import math
def li(x):

n=10000
t=0
d=0
dx=(x-2)/n
for k in range(n):

d=2+k*dx
s+=dx*(1/ math.log(d+dx))
t+=dx*(1/ math.log(d))

return t + 1.05
a_list = [2,3,5,7,11,13,17,19,23]
def MillerRabin(n):

q = n-1
c = 0
while q&1 != 1:

q = q>>1
c += 1

for a in a_list:
check = True
m = pow(a,q,n)
if m == 1 or m == n-1:

check = False
else:

for _ in range(c):
m = pow(m,2,n)
if m == n-1:

check = False
if check:

return False
return True

def nextPrime(u):
y = u
isPrime1 , isPrime2 = False , False
while y%6 != 0:

y -= 1
while not isPrime1 and not isPrime2:

y+=6
if y-1 != u:

isPrime1 = MillerRabin(y-1)
isPrime2 = MillerRabin(y+1)

if isPrime1:
return(y-1,y-1-u)

return(y+1,y+1-u)
x = 6
po = pow(10,x)
if x == 1:

prevHigh = 2
placement = 5

else:
G = math.floor(po/li(po)*(2* math.log(li(po))-math.log(po)+0.277))
if G&1 == 1:

G += 1
g = math.floor(math.exp(math.sqrt(G)))
while not MillerRabin(g):

g += 1
initPrime = g
prevHigh = 0
placement = 0
while initPrime < po:

d = nextPrime(initPrime)
if d[1] > prevHigh:

prevHigh = d[1]
placement = d[0]

initPrime = d[0]
print(prevHigh)
print(placement)
print(placement -prevHigh)

8

5.1 Putting it all together

Displayed at the beginning of Section 5 is the full and final version of our prime
gap finding algorithm (an annotated version will be attached on the end of this
document). It begins by defining the various functions discussed previously, but
as we approach the latter half of the code, we begin to see how these functions
are all utilised in conjunction with one another. There is also another function
introduced, the nextPrime(u) function. This function operates on the idea that
every prime is either 1 more or 1 less than a multiple of 6. It takes the number
u, and checks numbers 1 greater than or 1 less than all multiples of 6 greater
than u. The purpose of this function is simply to output the next prime after
u, and so as soon as it finds a prime, it will return the value of that prime, as
well as the difference between u and that prime.

The immediate first line of code after defining all of the functions is to choose
our x value, that is, the number that defines the range of primes in which to
look, 10x. In this example we have used 106, as this is the highest value of x for
which the algorithm can run with maximal efficiency. We then set the variable,
po, to be 10x. Following this, we take into account the case of x = 1, which
fails to work with the rest of the code as it is designed to compute larger sets of
primes with larger numbers in them. As the x = 1 case can be easily calculated,
the values are simply assigned, and the remainder of the code is ignored.

With the case of x = 1 dealt with, we can now explore the remainder of the
code, which begins by applying Wolf’s conjecture. We then add 1 to the value
G if it is odd, as the prime gap can only be even. With this value, we now apply
Shank’s conjecture to arrive at an estimated location for the prime at which to
start looking.

This can be applied in combination with the function, nextPrime(u), as it
offers a lower bound to the prime gap by a considerable margin, and one which
has been tested and proven for all 10x, x < 15 so that the maximal gap will not
occur at a number less than g. However in order for this to work effectively,
the input u for the nextPrime(u) function should be prime, and so we increase
the value of g until we reach a prime number. From here we set the value of
initPrime to g, and create the variables prevHigh and placement, which will
track the length of the gap itself, and its position.

With the setup complete, the code can now run its course as it continues to
loop until it exceeds the upper limit, checking every subsequent prime number
following the initial g value. The final output of this algorithm will be the length
of the gap, and the pair of consecutive primes that form the gap.

5.2 Results

Our final code was able to produce results up to x = 9, however, this took
several minutes. x = 6 was where the program took less than a second to run.

9

All results were checked and verified to those given by the Wolfram Mathworld
page on prime gaps (excluding x = 1, as while Wolfram describes the prime gap
beneath a number to be beneath if the beginning of the gap is underneath, the
document which outlined problem 5 described the whole gap as being under-
neath the number, leading to a slight inconsistency in values in that instance).
Although we did not manage to make it to x ≥ 10, the gaps from x ≥ 12 were
achieved by others using more optimised algorithms, more time on their hands,
and supercomputers; overall, we did not too badly. Consequentially, the chal-
lenge set for the generation of prime gaps from x > 15 would be either require
immensely different code from what we have currently, or be extraordinarily
time consuming.

5.3 Limitations and Further Optimisations

Though significant improvements to the algorithm were made during the process
of its construction and development, there still remained some key flaws.

The most outstanding flaw of this code lies with its limited range, as it can
only output values up to x = 8 within a reasonable time. While this could
potentially be increased if it was run on a computer with higher processing
power, it would still take far too long to reach any numbers within the range
of 15 ≤ x ≤ 20. The code itself, while greatly optimised, still likely has room
for further improvements and adjustments that could reduce computing time.
For example, other similar tests have used some form of Euler’s sieve, an old
method of producing a list of primes quickly. It has been shown that there are
faster prime determining functions available to quantum computers, however,
efficient and commercially available ones will likely not be around for some time
yet. The mathematics in this area is rich and developing, with world famous
mathematicians like Terence Tao being highly involved. We have no doubt that
in years to come, there will be further progression in this area, and consequently,
further optimisation of the finding of maximal prime gaps.

References

[1] Marek Wolf. “First occurrence of a given gap between consecutive primes”.
In: (Apr. 1997).

[2] Marek Wolf. “Some Conjectures on the Gaps Between Consecutive Primes”.
In: (Sept. 1998).

[3] ”Prime gap”. Wikipedia. url: https : / / en . wikipedia . org / wiki /

Prime_gap.

[4] Logarithmic integral function. Wikipedia. url: https://en.wikipedia.
org/wiki/Logarithmic_integral_function.

[5] Miller–Rabin primality test. Wikipedia. url: https://en.wikipedia.
org/wiki/Miller-Rabin_primality_test.

10

[6] Prime-counting function. Wikipedia. url: https://en.wikipedia.org/
wiki/Prime-counting_function.

[7] Table of Known Maximal Gaps. PrimePages. url: https://primes.utm.
edu/notes/GapsTable.html.

[8] Terence Tao. Small and large gaps in the primes. url: https://terrytao.
files.wordpress.com/2015/07/lat.pdf.

[9] The Gaps Between Primes. PrimePages. url: https://primes.utm.edu/
notes/gaps.html?id=research&month=primes&day=notes&year=gaps.

[10] Uni. SoloLearn. url: https://code.sololearn.com/ciMlRPgrK8DH/
#py.

[11] Eric Weisstein. Logarithmic Integral. url: https://mathworld.wolfram.
com/LogarithmicIntegral.html.

[12] Eric Weisstein. Prime Counting Function. url: https://mathworld.

wolfram.com/PrimeCountingFunction.html.

[13] Eric Weisstein. Prime Gaps. url: https://mathworld.wolfram.com/
PrimeGaps.html.

[14] Marek Wolf. url: http://pracownicy.uksw.edu.pl/mwolf/.

11

#this is a fully documented version of our final code for problem 5, essentially step by step

import math #importing in one of python's inbuilt libraries, in order to avoid outsourcing one

def li(x): #li(x) is the logarithmic integral function, approximately equal to the prime counting function which we will use later
 #we will solve this integral by adding together small rectangles of the area underneath
 n=10000 #this is the number of rectangles we will use
 t=0 #this will be our output
 d=0 #this is the number which will be taken log of
 dx=(x-2)/n #this is the number which will be multiplied by to give the area. note that it is reduced by 2. this is in order to avoid
the asymptotes in li(x)
 for k in range(n): #repeating n times...
 d=2+k*dx #defining d based on x. we add the 2 back on here to avoid taking the log of infinity or 1
 t+=dx*(1/math.log(d)) #here we add the area of the rectangle onto t
 return t + 1.05 #once all the rectangles are added on, we have t, then we add on ~li(2) to make up for the area we did not
use in order to avoid the asymptotes

a_list = [2,3,5,7,11,13,17,19,23] #here we have the list of numbers used in the Miller-Rabin prime check

def MillerRabin(n): #here we begin to define the Miller-Rabin prime check
 q = n-1 #q becomes one less than n
 c = 0 #set c
 while q&1 != 1: #while the last bit of q is 0
 q = q>>1 #bitshift q by 1 to the right
 c += 1 #each time this happens add 1 to c
 #this produces n-1 = 2^c*q
 for a in a_list: #now all the numbers in a_list are checked
 check = True #used to check if conditions for primality are met
 m = pow(a,q,n) #now we set m to be a^q mod n
 if m == 1 or m == n-1: #if m meets the conditions outlied further on the document
 check = False #check is set to false; it is not composite yet
 else: #in the case that it could be composite
 for _ in range(c): #repeating c times
 m = pow(m,2,n) #m = m^2 mod n
 if m == n-1: #again, m is checked for potential primality, outlined further in the document
 check = False #check is set to false; it is not composite yet
 if check: #if check was unchanged, this would come into effect
 return False #and return that it was composite
 return True #after all the cycles are done and it was never proven composite, return True

def nextPrime(u): #define a function that spits out the next prime, and the gap between them
 y = u #we set y to be u
 isPrime1, isPrime2 = False, False #both variables used to detect a prime are set to False
 while y%6 != 0: #while y is not divisible by 6
 y -= 1 #subtract 1
 #y is now a lower multiple of 6
 while not isPrime1 and not isPrime2: #while a prime has not been found
 y+=6 #6 is added to y
 if y-1 != u: #as long as y-1 was not the original number
 isPrime1 = MillerRabin(y-1) #check if y-1 is prime
 isPrime2 = MillerRabin(y+1) #check if y-2 is prime
 if isPrime1: #once a prime is found, if isPrime1 was the prime number
 return(y-1,y-1-u) #print the number and the gap
 return(y+1,y+1-u) #otherwise do the same for isPrime2

x = 5 #here we define x, as an example, 5
po = pow(10,x) #here we set 10^x
if x == 1: #because nextPrime(u) is not compatible with small numbers, we have to define x = 1 elsewhere
 prevHigh = 2 #as such we define the numbers that would work for x = 1
 placement = 5
else:
 G = math.floor(po/li(po)*(2*math.log(li(po))-math.log(po)+0.277)) #here we use Wolf's conjecture to estimate the gap of the
prime we are looking for
 if G&1 == 1: #if it is an odd number (which a gap cannot be)
 G += 1 #add 1
 g = math.floor(math.exp(math.sqrt(G))) #here we use Shank's Conjecture to estimate the number of which to start on by using

our estimated prime gap. we are able to combine this with nextPrime(u) because it offers a lower bound to the prime gap by a fair
margin, one which has been tested for all 10^x x<15
 while not MillerRabin(g): #in order to use nextPrime(u) effectively, u should be a prime number. here we repeat until g is
prime
 g += 1 #add 1 to g
 initPrime = g #here we initialise initPrime to our estimate of g
 prevHigh = 0 #this racks our previous high gap
 placement = 0 #this tracks the number the gap finished at
 while initPrime < po: #while initPrime is less than 10^x
 d = nextPrime(initPrime) #find the next prime after initPrime
 if d[1] > prevHigh: #if the gap between the two primes is now the largest gap
 prevHigh = d[1] #set the new highest gap to prevHigh
 placement = d[0] #get the placement of the gap
 initPrime = d[0] #initPrime is now the new prime

print(prevHigh) #once this is all done, print the highest gap
print(placement) #print the placement
print(placement-prevHigh) #print the placement the gap started at

#done!

	Year 10_Tan, Teoh & Wang.pdf
	Year 10_Tan, Teoh & Wang Submission.pdf

