Introduction

How marine microorganisms navigate towards food is a complex topic currently under investigation. By stiring dishes of water containing nutrients and microbes, we can gain insight into bacteria's behaviour By stirring dishes of water
in aquatic environments $[1]$.
The flow fields created by this stiring are complicated, and currently found through tracer particle The flow fields created by this stitring are complicated, and currently found through tracer
velocimetry (TPV) - a computationally involved method sujject to significant noise $[1,2]$.
This project aimed to develop a simplified model of the flow field created by an arbitrarily moving cylindrical
stiring rod, which accurately predicts how nutrients are mixed into the dish over time

The Stokeslet Model

放 vector fied created by the rod is given by [3]

$$
u^{P F}=\left(\frac{I}{r}+\frac{x x}{r^{3}}\right) \cdot \frac{F^{e}}{8 \pi \mu}
$$

Where $u^{P F}$ describes the velocity of a particle at x_{p} in the lab frame.

- x describes the displacement of the particle from the rod at $x_{R}\left(x=x_{p}-x_{R}\right)$.
μ is the dynamic viscosity of the mixture.
r is the distance between the rod and paritit
- F^{e} describes the force of the rod on the water, and is taken to be proportional to the velocity of the rod (since it is the reaction force of the rod's drag), $\left(F^{e}=8 \pi \mu A \dot{x}_{R}\right.$, for some effective drag constant $\left.A\right)$.
This model creates a vector flow field known as a stokeslet; qualitatively similar in shape to the fields found in
experiments using TPV, in the rod's frame of reference (see figure 1).
Assumptions:
Assumptions:
Stokes-Flow (Reynolds Number ≈ 0)
Diffusion (generated by thermal fluctuations) is negligible
The cylindrical rod has an infinite height and infinitesimal radius (point force)
The dish of water is infinite in size (ignore boundary conditions)
- The dist of water is infinitit in size (ignore boundary conditions)
Sedimentation is negligibie and particles move only in the xy plane (gravity is ignored)

Circular motion
Basic case where rod has velocity $\dot{x}_{R}=\boldsymbol{V}=(0, V)$ for some constant V, and begins at the origin - in the lab frame $x_{R}(t)=(0, v t)$.
Particles begin at $x_{p, 0}=\left(x_{0}, y_{0}\right)$, where $r_{0}=\left|x_{p, 0}\right|$.
At $x_{p, 0}=(\pm A, 0)$, particles run parallel to rod: $x_{p}(t)=(\pm A, V t)$.
Most fruiftul analysis occurs in the rod's frame of reference, where the vector field $u_{R F}$ is given by
$\boldsymbol{u}_{R F}=\boldsymbol{u}^{\text {UP }}-V$, and $x_{R}(t)=0$ (see figure 2).
In the rod's frame of reference, a given particle will follow the streamline (for $x_{0} \neq 0$):

$$
y(x)= \pm x \sqrt{\frac{4 A^{2} r_{0}^{2} x^{2}}{\left[r_{0} x^{2}-x_{0}^{2}\left(r_{0}-2 A\right)\right]^{2}}-1}
$$

The kind trajectory of a particle is sensitive to its starting position (see figure 3): : - However, if $r_{0}>2 A$, then it will move around the rod and be left behind (green streamlines). boundary shows potential utility in modelling the cylindrical fod thusly.

Rod travels in a circle of radius R beginning at $x_{R, 0}=(R, 0)$ with angular velocity ω; in the lab frame
$x_{R}(t)=(R \cos \omega t, R \sin \omega t)$.

- Particles follow 'spirographic' patterns (see figure 4).

For a circular path of large enough radius $(R>4 A)$, there are 5 initial particle positions ($\left(x_{p, 0}\right)$ for which the particle trajectory x_{p} will also be circular with angular velocity ω ('equilibrium points')
Namely: $x_{p, 0}=\left(R-\frac{8 A^{2}}{\omega^{2} R^{3}}+ \pm \frac{2 A \sqrt{\omega^{2} R^{2}-16 A^{2}}}{\omega^{2} R^{3}}\right),\left(\frac{R}{2} \pm \frac{\sqrt{R^{2}-44 R}}{2}, 0\right)$ and $\left(\frac{R}{2}+\frac{\sqrt{R^{2}+4 A R}}{2}, 0\right)$.
-The circularity of all these points' trajectories is unstable, meaning in any physical system with $\mathrm{Re}>0$ their trajectories would be slighty non-circular

Numerical Solutions
The initial Newtonian Forward-Step method employed was, although computationally fast, found to be
inaccurate (relative to analytical solutions in 1 and 2 dimensions) when x is small (he rod is close to the inaccurate
particles).

- Mathematica's' 'NDSolve' function was extremely accurate, and the most time efficient solver for large Mystems of particices
The Runge-Kutta method (4th order) was also high in accuracy for a reasonable time-step, and was more compatible with the addition of thermal fluctuations, however, was less time efficient for large systems of
particles. compatible
particles.

Further Research
Further Research

One could use laboratory
coefficient A (see figure 6).

that difisuive effects do not significantly affect large systems of particles, one would expect B to be small $[1]$.
This model could also be used to investigate how microbial swimmers (whose swimming mechanisms themselves can
be modelled using stokestets) navigate towards food in marine environments, with additional improvements added.

Acknowledgement

References

Dunkel, J, Putz, V.B., Zaid, I.M. and Yeomans, J.M. (2010). Swimmertracer scattering at Iow Reynolds number. Soft Matter, 6 (17), p.4268.
2. Jeanneret, R., Pushkin, D.O. and Polin, M. (2019). Confinement Enhances the Diversity of Microbial Fow Fields. Physical Review Letters, 123(24)

