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• How marine microorganisms navigate towards food is a complex topic currently under investigation. 

• By stirring dishes of water containing nutrients and microbes, we can gain insight into bacteria’s behaviour 
in aquatic environments [1].

• The flow fields created by this stirring are complicated, and currently found through tracer particle 
velocimetry (TPV) – a computationally involved method subject to significant noise [1,2].

• This project aimed to develop a simplified model of the flow field created by an arbitrarily moving cylindrical 
stirring rod, which accurately predicts how nutrients are mixed into the dish over time

Introduction

• Rod travels in a circle of radius R beginning at 𝒙!,# = (𝑅, 0) with angular velocity 𝜔; in the lab frame 
𝒙!(𝑡) = (𝑅 cosω𝑡 , 𝑅 sin𝜔𝑡).

• Particles follow ‘spirographic’ patterns (see figure 4). 

• For a circular path of large enough radius (𝑅 > 4𝐴), there are 5 initial particle positions (𝒙$,#) for which the 
particle trajectory 𝒙$ will also be circular with angular velocity 𝜔 (‘equilibrium points’)

• Namely: 𝒙$,# = 𝑅 − %&!
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• The circularity of all these points’ trajectories is unstable, meaning in any physical system with Re > 0 their 
trajectories would be slightly non-circular.

The Stokeslet Model

• Basic case where rod has velocity �̇�! = 𝑽 = (0, 𝑉) for some constant V, and begins at the origin - in the lab 
frame 𝒙!(𝑡) = (0, 𝑉𝑡).

• Particles begin at 𝒙$,# = (𝑥#, 𝑦#), where 𝑟# = 𝒙$,# .
• At 𝒙$,# = (±𝐴, 0), particles run parallel to rod: 𝒙$(𝑡) = (±𝐴, 𝑉𝑡).
• Most fruitful analysis occurs in the rod’s frame of reference, where the vector field 𝒖!. is given by

𝒖!. = 𝒖/. − 𝑽, and 𝒙! 𝑡 = 𝟎 (see figure 2).

In the rod’s frame of reference, a given particle will follow the streamline (for 𝑥# ≠ 0):

𝑦(𝑥) = ±𝑥
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The kind trajectory of a particle is sensitive to its starting position (see figure 3):
• If it begins with 𝑟# ≤ 2𝐴, it will always remain within the circular region 𝑟 ≤ 2𝐴 (the ‘vortex’) (red streamlines).
• However, if 𝑟# > 2𝐴, then it will move around the rod and be left behind (green streamlines).
• The vortex phenomenon is unphysical and due to the point force assumption; however, the circular 

boundary shows potential utility in modelling the cylindrical rod thusly.

Straight Line Motion
• A common stirring pattern used to mimic marine environments is a figure 8 / infinity sign rotation that 

processes by some angle each circuit.

• From qualitative experimental analysis, particle clumps become ‘streaky’ when the rod is stirred through 
them (see figure 5).

• It was found that a drag coefficient of the order 𝐴 ≈ 0.015 achieves this phenomenon.

• Diffusion effects were additionally modelled by updating the flow field 𝒖 = 𝒖/. + 𝐵 H 𝝃(𝑡), where 𝝃(𝑡) is a 
Gaussian white noise function that mimics thermal fluctuations, and the amplitude B is to be experimentally 
determined (see figure 7).

Figure 8 Motion

• The initial Newtonian Forward-Step method employed was, although computationally fast, found to be 
inaccurate (relative to analytical solutions in 1 and 2 dimensions) when 𝒙 is small (the rod is close to the 
particles).

.
• Mathematica’s ‘NDSolve’ function was extremely accurate, and the most time efficient solver for large 

systems of particles

• The Runge-Kutta method (4th order) was also high in accuracy for a reasonable time-step, and was more 
compatible with the addition of thermal fluctuations, however, was less time efficient for large systems of 
particles.

Numerical Solutions

The vector field created by the rod is given by [3]:

𝒖/. = (
𝑰
𝑟
+
𝒙𝒙
𝑟0
) H

𝑭1
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• Where 𝒖/. describes the velocity of a particle at 𝒙$ in the lab frame.
• 𝒙 describes the displacement of the particle from the rod at 𝒙! (𝒙 = 𝒙$ − 𝒙!).
• 𝜇 is the dynamic viscosity of the mixture.
• 𝑟 is the distance between the rod and particle (𝑟 = 𝒙 ).
• 𝑭1 describes the force of the rod on the water, and is taken to be proportional to the velocity of the rod (since 

it is the reaction force of the rod’s drag), ( 𝑭1 = 8𝜋𝜇 ̇𝐴𝒙!, for some effective drag constant A).

This model creates a vector flow field known as a stokeslet; qualitatively similar in shape to the fields found in 
experiments using TPV, in the rod’s frame of reference (see figure 1).

Assumptions:
• Stokes-Flow (Reynolds Number ≈ 0)
• Diffusion (generated by thermal fluctuations) is negligible 
• The cylindrical rod has an infinite height and infinitesimal radius (point force)
• The dish of water is infinite in size (ignore boundary conditions)
• Sedimentation is negligible and particles move only in the xy plane (gravity is ignored)

Circular motion

Figure 1. Vector field of rod (positioned at origin) in 
the rod frame under the stokeslet model

Straight Line Motion Video.
URL: https://youtu.be/nduvOHwSlY4
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Further Research
• One could use laboratory TPV data, and the binned data from the model to find values of best fit for the drag 

coefficient A (see figure 6). 

• This could also be done for the magnitude of thermal fluctuations B, however, given that previous research suggests 
that diffusive effects do not significantly affect large systems of particles, one would expect B to be small [1].

• This model could also be used to investigate how microbial swimmers (whose swimming mechanisms themselves can 
be modelled using stokeslets) navigate towards food in marine environments, with additional improvements added.

Figure 2. Vector field of rod under the stokeslet model 
in the rod’s frame

Figure 3. Streamlines of particles in the rod’s frame of reference,
both inside (red) and outside (green) the ‘vortex’ (black).

Figure 4. ‘Spirographic’ trajectories of particles with ongoing 
circular stirring. 

Figure 5. Streaky particle clump after 
figure 8 stirring . 

Figure 6. Binned figure 8 stirring 
data visualisation. 

Figure 7. Single particle trajectory with (blue) and
Without (orange) thermal motion. 

Circular Motion Video.
URL: https://youtu.be/bgW_1pzq90M

Figure 8 Motion Video.
URL: https://youtu.be/-2XMc8Bl-5s
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