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Introduction

Modelling lava flows is of interest to those living in the vicinity of volcanos, given
their destructive potential. The flow of lava down a volcano can be modelled at its
simplest as the gravity current of a viscous fluid on an inclined plane1. For simple
fluxes we end up with similarity solutions for the flow. For more complicated fluxes
the method of characteristics can be employed.

Our governing equation
∂h

∂t
+
∂h3

∂x
= 0 (1)

is drawn from Lister2, and is an example of a generalised inviscid Burgers’ equation.

Similarity Solutions

Fig. 1: Similarity solutions, adapted from Lister2 Fig. 2

In simple situations we may reduce our partial differential equation into an ordinary
differential equation in some new dimensionless variable, η.
Suppose we introduce a few power laws, for h and x and volume.

h ∼ ta (2)

x ∼ tb (3)

V ∼ ta+b (4)

∼ tα (5)

Combining with our governing equation and solving the resulting system of linear
equations we get for the powers, we can write

h = cta = taf (η) = t
α−1
3 f (η), η =

x

tb
(6)

Thus producing

af (η) + (3f 2(η)− bη)
∂f

∂η
= 0 (7)

Equation 7 can be solved with an integrating factor of f− 3α
α−1. Plotting the solutions,

keeping in mind conservation of volume, produces Figure 1.

Fig. 2: Ekrem Canli, CC BY-SA 4.0 <https://creativecommons.org/licenses/by-sa/4.0>, via Wikimedia Commons,

https://commons.wikimedia.org/wiki/File:K%C4%ABlauea lava flow 2017(2).jpg

Fig. 3: Fissure 8 on Kı̄lauea, courtesy of the U.S. Geological Survey, https://www.usgs.gov/media/images/fissure-8-kilauea

The Inverse Problem

The position of the front as a function of time can be found for any given flux as a
function of time, by applying our methods of characteristics approach. The question
then is whether the reverse may be true. Simply running time backwards will blow our
equation up, a la the inverse heat equation, but a physical-esque method of reversing
the flow seems entirely plausible, but has not as of yet been developed.
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Method of characteristics

Fig. 4: Characteristics for parabolic initial conditions,

note the crossed characteristics indicating a shock

Fig. 5: Height at various times, for parabolic initial

conditions

For more complicated flows, which we’ll need to be able to tackle given the desire for a
general tool, we’ll need a different approach. I’ve used the method of characteristics.
Farlow3 offers a good introduction to the technique.
We consider the perspective of a moving observer, so we have x(t), such that the
flow appears fixed in place.

∂h

∂t
+ 3h2∂h

∂x
= 0 → dh

ds
=

∂h

∂t

dt

ds
+
∂h

∂x

dx

ds
= 0 (8)

So dt
ds = 1 and dx

ds = 3h2. Integrating, we can choose to add an extra parameter to t
or x, for boundary or initial conditions respectively. Initial conditions are somewhat
easier, so we write t = s and x = 3h2s + τ . For initial conditions we consider

h(x, 0) =


0 x < 0

6(x− x2) 0 ≤ x ≤ 1

0 x > 1

(9)

This has the nice property of having a unit volume. Figure 4 is simply produced by
plotting x against t for a range of τ values.

Figure 5 is the product of a somewhat more involved process. Knowing that h is
constant along characteristics, it’s simply a function of τ . But, τ can be written as
a function of x and t. Thus we can see how height varies over time, with the caveat
that height will often end up multi-valued, which is clearly non-physical. To address
this we insert shocks, discontinuities in height, that move over time such that volume
is conserved. In our constant volume case that means ensuring the volume remains
one. Shock position may then be determined by the equation

1 = hsx(hs)−
∫ hs

0
x(h)dh (10)

We can solve this numerically without difficulty, and that gives us Figure 5. Note this
is the long-time solution to the flow, after the shock has reached the front. Happily,
this matches our constant volume similarity solution very well, unhappily, we’ve not
determined shock position before it reaches the front, for which we’ll need to delve
into Rankine–Hugoniot conditions.


