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INTRODUCTION

The study of Galois Theory is concerned with the
symmetries that arise in finite extensions of fields. The
set of all automorphisms that fix the base field form a
group and under certain conditions, if this group is
‘large’ enough then it is called a Galois group and the
extension is called Galois. In particular one looks at
and can often compute the Galois Groups given an
arbitrary Galois extension. However a natural ques-
tion to ask is whether given a field F and an arbitrary
group G, does there exist a finite Galois extension with
Galois group equal to G? Such a question is called the
Inverse Galois Problem. In complete generality this
is not the case, for example all non-cyclic groups do
not appear as the Galois Group of any extension of
the finite fields. However the largest open problem is
whether this is true over Q. We instead opt to investi-
gate the solved problem; whether all finite groups ap-
pear as a Galois group of an extension of C(t) which
enables us to use the powerful tools of Complex Anal-
ysis to construct such an extension.

RIEMANN SURFACES

Figure 1: Visualisation of a
covering map.
Image Source: Wikipedia

A Riemann Surface X is a Hausdorff topological space which is locally isomor-
phic to the complex plane. Slightly more concretely this means that any point in
X has a neighbourhood that can be mapped biholomorphically onto an open set
in C such as the unit disk.

Formally a finite cover of a Riemann Surface is a function from one Riemann
Surface to another, p : Y → X such that for each point x ∈ X there exists a

neighbourhood U of x such that p−1(U) =
n⊔

i=1

Vi where each Vi is an open set in

Y and the restriction p|Vi
: Vi → U is a homeomorphism. Intuitively Y ‘covers’

X with n layers which are all in some sense ‘copies’ of X. Figure 1 helps visualise
this.

If X is a Riemann surface then a function f : X → C is said to be
meromorphic if for all charts z : Vi → C; f ◦ z−1 : C → C is meromorphic in the
usual sense.
We denote the field of all meromorphic functions on X by M(X). Importantly for our purposes we have that
M(P1(C)) ∼= C(t)

The universal cover X̃ is in some sense the largest cover of X . It has the universal property that for any other
connected cover π : Y → X and points x̃ ∈ X̃ and y ∈ Y with p(x̃) = π(y) there exists a unique homeomorphism
σ : X̃ → Y such that σ(x̃) = y.

THE RIEMANN EXISTENCE THEOREM
A natural question to ask is that given a covering Y of a Riemann Surface X why would there exist more mero-
morphic functions on Y than there does on X? It turns out the answer to this question and many others in this
project is the Riemann Existence Theorem. The form of the theorem we rely on is as follows:
For any compact Riemann Surface X with points x1, ..., xn ∈ X and values a1, ..., an ∈ C there exists a meromor-
phic function f ∈ M(X) such that f(x1) = a1, ..., f(xn) = an.
It is this that guarantees the existence of enough meromorphic functions in a cover of X to provide a sizeable
extension of the field of meromorphic functions on X .

FUNDAMENTAL GROUPS

Figure 2: Visualisation of continuously de-
forming one path to another.
Image Source: University of Chicago

In topology the study of how loops (closed paths) behave is an im-
portant tool in the understanding of a topological space. Consider
two paths f1 and f2. If f1 can be continuously deformed to f2 then
the two loops are called homotopic and for our purposes we con-
sider them to be essentially the same path. For example in the dia-
gram on the right one can imagine carefully ‘bending’ and shifting
f1 until it becomes f2. The set of all loops rooted at some point
x ∈ X where we consider two loops to be identical if they are ho-
motopic is a group called the fundamental group which is denoted
by π1(X,x). This group helps encapsulate various properties of the
space such as the number of ‘holes’.

Figure 3: Visualisation of the lifting of
a loop into the covering space

A key tool in our study was the use of a process called a lift, which, in the
context of covering spaces, takes a loop rooted at some x in the base space
and ‘lifts’ it up to produce a path, starting at some point in the fibre of x, in
the covering space. This lift respects the covering map in that the image of
the lifting of a path is the original path so in some sense this is an inverse
image of the original loop. However one may note that it is not actually
the inverse image as the covering map is most likely not invertible so such
a preimage is not unique but for our purposes once you specify a starting
point for the loop in the fibre the lifting is in fact unique. This allows for
a concrete method to compare the fundamental group of the base space to
the covering space.

FINAL CONSTRUCTION
This summary excludes a massive amount of detail
but the general construction of the field extension of
C(t) is as follows:

1. Suppose our desired Galois Group is G. Then
using the general fact that there exists n ∈ N and
N ⊴ Fn such that G ∼= Fn/N , i.e G is the quo-
tient of the free group by some normal subgroup
N .

2. Then consider the (n+1)-punctured Riemann
Sphere X = P1(C) − {x1, ..., xn+1}. This has a
fundamental group isomorphic to the free group
on n generators Fn.

3. Then take the universal cover which we denote
by X̃ . This exists since X is connected.

4. Then using the realisation of N as a subgroup of
Aut(X̃|X) ∼= π1(X,x) we consider the quotient
space X̃/N which is just X̃ where two elements
x1, x2 ∈ X̃/N are considered equal if there exists
σ ∈ N which sends x1 to x2.

5. Then we have that:
Aut(X̃/N |X) ∼= Aut(M(X̃/N)|M(X)) ∼=
Fn/N ∼= G.

6. Then one can extend the covering map
from X̃/N to X , to a covering map from
some Riemann Surface Y to P1(C) with the
nice property that Aut(M(X̃/N)|M(X) ∼=
Aut(M(Y )|M(P1(C)))

7. Then using the fact that M(P1(C)) ∼= C(t) we
see that in fact M(Y )|C(t) is the desired field ex-
tension with Galois group G.

AUTOMORPHISMS OF THE COVERING SPACE
Another key step in our construction is the notion of a fibre preserving automorphism. Intuitively, if p : Y → X
is a covering map then it is an automorphism that ‘respects’ the covering map, meaning it sends elements of
p−1(x) to other elements of p−1(x). With slight abuse of notation we denote the set of all such automorphisms
as Aut(Y |X). More formally an automorphism σ is in Aut(Y |X) if p ◦ σ = p.
In addition we also wish to study the extension M(Y )|M(X). Here this is again a slight abuse of notation as in
general M(X) ̸⊂ M(Y ) but we instead consider this as an extension of the embedding of M(X) in M(Y ) with
the embedding being given by the function p∗ : M(X) → M(Y ) defined by p∗(f) = f ◦ p. Then with this we
can define the Aut(M(Y )|M(X)) in the more usual way as the set of all automorphisms of M(Y ) which fix the
embedding of M(X) in M(Y ).

A covering map p : Y → X is considered to be Galois if Aut(Y |X) acts transitively on each fibre p−1(x) for
x ∈ X . It is worth noting that the universal covering does satisfy this condition.

CONCLUSION
In conclusion, if one is given any arbitrary finite group
G then using this construction we can construct a
field extension of C(t) with Galois group G. The only
downside to this method is that the desired extension
is given in very abstract terms, it is not easy to see
what functions such a field extension has that are not
in C(t) even though we know they must exist. In
summary though their general existence is assured,
giving an explicit solution remains very challenging.
Indeed to even compute the universal cover of the
twice punctured plane is quite non-trivial, then to give
an explicit form for the quotient space required is in
general a very challenging problem. However if the
reader is content with knowing that such an exten-
sion does exist for all finite groups then the general
existence argument given is indeed sufficient. An-
other area to look further into would be understand-
ing the Riemann Existence Theorem. Though a de-
ceptively simple theorem, modern proofs for it require
the finiteness of certain cohomology groups which of-
fer a very interesting avenue of further study.
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