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Introduction

Informally, a Coxeter group can be though of as a group that is generated
by reflections. The study of such groups lends itself nicely to the use of
algebraic, geometric and combinatorial perspectives; it finds many applica-
tions in various areas of mathematics.

In this poster we explore the general theory of Coxeter groups, placing
an emphasis on their associated 'root systems’ and geometric representa-
tion as a group generated by reflections in a euclidean space (following
Humphreys [2]). In doing so, we will work to establish the relationship be-
tween the 'Tits cone’ and the 'Imaginary cone’ under mild finiteness and
non-degeneracy conditions.

Coxeter group definition

A Coxeter group is a group W that admits a presentation relative to a gener-
ating set S, subject only to relations of the following form:

(5,) " =1
Where m(s,s’) = 1 and m(s,s’) = m(s',s) € N>y for s # s’ in S. The pair
(W, S) is called a Coxeter system.

In the case that no relation occurs for the pair s, s’, we say by convention that
m(s,s") = oco. Although much of what will be discussed holds for arbitrary S,
we will always assume S to be finite. We note that it can be shown that each
s € Shasorder2inW.

Some examples of Coxeter groups are as follows:

Dihedral groups

For any n € N>y The dihedral group D,, of order 2n, is a Coxeter group with
the following presentation:

Dy, = (51,52 | (51)? = (s2)* = 1, (s51892)" = 1)

For D,, we see that m(s1, s2) = n, however, in the case that m(s1, s2) = oo,
we get the infinite dihedral group D,

Triangle groups

For integers I, m, n greater than or equal to 2, the triangle group A(l,m,n) is
a Coxeter group with the following presentation:

A(l,m,n) = (s1,52,53 | (51)% = (52)% = (53)2 = 1, (5152)! = (5283)™ = (s351)" = 1)

When interpreted geometrically, A(l, m,n) can be though of as the group
generated by the reflections in the sides of a triangle with internal angles
(7s 7> &) In turn, each triangle group corresponds to a triangular tiling of
either euclidean, spherical, or hyperbolic space.

If ++L +1 =1 the corresponding tiling is of the euclidean plane (Figure 1).

If ++L1 + 151 we obtain a tiling of the sphere (Figure 2). In this case
A(l,m,n) is finite.

If 1 + 2 + 1 <1, we obtain a tiling of hyperbolic space (Figure 3).

Figure 1. A(2,3,6)

Figure 2. A(2,3,3)

Figure 3. A(2,3,8)

The length function

Since the generators s € S have order 2 in W, each w # 1 in W can be
written in the form
W = 8159...5p

for some (not necessarily distinct) s; in S. We define the length £(w) of w to be
the smallest r for which such an expression exists, and we call this expression
reduced. By convention £(1) = 0.

In the case that all m(sq, sg) = oo for so # s, we call W a universal Coxeter
group. A Coxeter group W is universal if and only if each w € W has a unique
reduced expression.

We note the following important result: Forall s € S and w € W, {(ws) =
L(w) £ 1. Similarly for ¢(sw).

Geometric representation of W

Given a Coxeter system (W, S), we aim to construct a representation of W
as a group generated by reflections in a euclidean space. It is too much to
expect these reflections to be orthogonal, but we can construct a suitable
alternative by defining a reflection to be as follows:

A reflection is a linear transformation that sends some nonzero vector to its
negative, and fixes pointwise a hyperplane in some vector space V.

Now let V' be a vector space over R, having a basis {vs|s € S} in one-to-
one correspondence with S. We define a symmetric bilinear form B on V as
follows:

B(7s,7s') = — cos m(s.5)

where we define B(vs,vs) = —1 if m(s,s’) = co. For each s € S we define
a reflection o5 : V. — V by the rule:

s(A) = v —2B(vs, A)7s

which fixes pointwise the hyperplane H,, = {A € V' | B(vs,A) = 0}.
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By this construction we get a unique homomorphism o : W — GL(V), such
that:
S+ O

and the group o(W) preserves the form B on V. Importantly, we get that
the representation o : W — GL(V) is faithful [2, page 113].

Root systems

For ease of notation, we will write w(~s) in place of o(w)(vs).

The root system ® of W is defined to be the collection of all vectors w(~s) in
V,where w € W and s € S. These vectors are unit vectors, since the group
o(W) preserves the form B on V.

If o is any root, we can write it uniquely in the form:

o= chfys (cs €R)

seS

where the ¢, coefficients are all of like sign. We call a root « positive and
write o > 0 if all ¢, > 0. Similarly, call a root « negative and write a < 0 if all
cs < 0. Let T and ®~ denote the respective sets of positive and negative
roots.

The infinite dihedral group D4 has an infinite root system, a portion of which
is depicted below:

Ha=Hp

Figure 4. Root system for Dy, = (s1,52 | (51)? = (s2)% = 1)

Theorem [2]: Lletw € Wand s € S. If L(ws) > L(w), then w(vs) > 0. If
l(ws) < L(w), then w(ys) < 0. O

We also note that for any w € W, ¢(w) is equal to the number of positive
roots sent by o(w) to negative roots [2].

Roots and reflections

Foreach root a € @, there is an associated reflection in GL(V'). Suppose a =
w(7s) for some w € W and s € S. A brief computation show that the action
of wsw~! on V depends only on «, not the choice of w and s. Hence we can
define t, := wsw~!. We also note that t,, acts on V as a reflection sending
a to —a, fixing pointwise the hyperplane H, :={\ € V' | B(\,«a) = 0}.

Let T denote the set of reflections t,, a € ®. Then we get that:

T = U wSw™!
weWw

The correspondence between a and ¢, is bijective. Now we note the follow-
ing result:
Theorem [2]:
(R1) If we have a, B € ®, such that = w(«) for some w € W, then
wtow ! = tg, €., wtow ™t = ()
(R2) letw € W, a € ®*. Then £(wt,) > £(w) if and only if w(a) > 0. O

Deletion and Exchange Condition

Here we outline a key fact about the nature of reduced expressions in W,
which is an integral property of Coxeter groups.

Strong exchange condition: let w = s;...s, (not necessarily reduced) for
si € S. Suppose a reflection ¢ € T satisfies ¢(wt) < ¢(w). Then there is an
index ¢ for which

wt = 81...§i...8r

where §; indicates omission of s;. If the expression for w is reduced, then ¢
is unique.

We obtain the following result as a corollary of the proof of the strong
exchange condition:

Deletion condition: let w = s;...s, for s; € S, such that ¢(w) < r (i.e. the
expression for w is not reduced). Then there exist indices 7 < 5 for which

w = 81...5;...5j...5;

where a hat again indicates omission. From this we see that if w = s5...s,
for s; € S, then a reduced expression for w may be obtained by omitting
an even number of specific s;.

Cayley graphs

Cayley graphs provide a convenient way of encoding properties of a group in
a geometric fashion. For a (finitely generated) group G and generating set S,
we define the Cayley graph Cay(G, S) to be the graph such that:

= Each element of G is assigned a vertex.
= Whenever g € G and s € S, there is an edge from g to gs.
Under the assumption that S generates G, Cay(G, S) is connected, directed

and locally finite. By convention, if a generator s € S has order 2 in G, then
we include a single undirected edge between g and gs.

For example, the Cayley graph for any given triangle group can be realised by
taking the dual graph of its respective tiling:
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Figure 5. A(2,3,6)
Cayley graph

Figure 6. A(2,3,3)
Cayley graph

Figure 7. Portion of
A(2,3,8) Cayley graph

Closely related to the Cayley graphs of Coxeter groups, is the Davis complex
- an alternate geometric realisation of Coxeter groups that is CAT(O) for
every Coxeter group [4]. Each Coxeter group acts on its Davis complex, in a
way that allows us to hold on to the orthogonality of the associated
reflections, but requires us to forgo linearity.

Contragredient action and the Tits cone

For any subset I C S, Define W; to be the subgroup of W generated by
all s € I. All subgroups of W that can be obtained in this way are called
parabolic subgroups. Importantly, W7y itself is a Coxeter group, relative to
the generating set I.

We now aim to further investigate the action of parabolic subgroups with
particular emphasises on the role of reflecting hyperplanes. To do so, we
will consider how W acts on V* by considering the contragredient action:

o : W — GL(V™)

Throughout, we will denote the elements of V* by f, g, h, ..., and following
Humphreys, we will introduce the following notation: for A € V and f €
V* denote f(\) = (f, A). Then the action of W on V* is characterised by:

(w(f),X) = (f,w™(N)

where we again use w(A) and w(f) to denote o(w)(A) and o*(w)(f) re-
spectively. For each s € S, we define the hyperplane: H, = {f € V* |
(f,as) = 0} and the associated positive half space: A, = {f € V* |
(f,as) > 0}. Now Define

C = ﬂAsandD:U: ﬂA_S
seS SES

The action of W and its parabolic subgroups W; can now be analysed by
partitioning D into subsets C defined as follows:

“-(07) ()

At the extremes, Cy = C and Cs = {0}. Now define the Tits cone:

7 = w(D)

weWw

Thisis a W stable subset of V* and is the union of all sets of the form w(Cr)
where w € W and I C S. We can now state the following results [2]:

Theorem:
(a) Wy is the stabiliser in W of each point of Cy, and 7 is partitioned by all
sets of the form w(Cr) where w € Wand I C S.

(b) D is the fundamental domain for the action of W on 7, i.e., the W -orbit
of each point of 7 meets D at exactly one point. O

The imaginary cone and its relationship with the Tits cone

Given a Coxeter system (W, S), a based root system as defined in [1] (@, IT)
has the following properties:

= II C ® is positively independent
=S ={sq|aecll}
=0 ={w(a)|weWacll}

Define the Imaginary cone %" of a based root system (®, IT) as follows [3]:

H=|Jw@)cv
weW

where: % = {v € cone(Il) | B(v,a) <0, Yo € 11}

Theorem: Under the assumption t@t B is non-singular, V' is finite dimensional
and I1 is finite, the closures 2 and  of the imaginary cone % and the Tits cone
 are dual cones . That is,

— %

A =T
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