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Introduction

Informally, a Coxeter group can be though of as a group that is generated

by reflections. The study of such groups lends itself nicely to the use of

algebraic, geometric and combinatorial perspectives; it finds many applica-

tions in various areas of mathematics.

In this poster we explore the general theory of Coxeter groups, placing

an emphasis on their associated ’root systems’ and geometric representa-

tion as a group generated by reflections in a euclidean space (following

Humphreys [2]). In doing so, we will work to establish the relationship be-

tween the ’Tits cone’ and the ’Imaginary cone’ under mild finiteness and

non-degeneracy conditions.

Coxeter group definition

A Coxeter group is a group W that admits a presentation relative to a gener-

ating set S, subject only to relations of the following form:(
s, s′)m(s,s′) = 1

Where m(s, s′) = 1 and m(s, s′) = m(s′, s) ∈ N≥2 for s 6= s′ in S. The pair

(W, S) is called a Coxeter system.

In the case that no relation occurs for the pair s, s′, we say by convention that
m(s, s′) = ∞. Although much of what will be discussed holds for arbitrary S,
we will always assume S to be finite. We note that it can be shown that each

s ∈ S has order 2 in W .

Some examples of Coxeter groups are as follows:

Dihedral groups

For any n ∈ N≥2 The dihedral group Dn of order 2n, is a Coxeter group with

the following presentation:

Dn = 〈s1, s2 | (s1)2 = (s2)2 = 1, (s1s2)n = 1〉

For Dn we see that m(s1, s2) = n, however, in the case that m(s1, s2) = ∞,

we get the infinite dihedral group D∞.

Triangle groups

For integers l, m, n greater than or equal to 2, the triangle group ∆(l, m, n) is
a Coxeter group with the following presentation:

∆(l, m, n) = 〈s1, s2, s3 | (s1)2 = (s2)2 = (s3)2 = 1, (s1s2)l = (s2s3)m = (s3s1)n = 1〉

When interpreted geometrically, ∆(l, m, n) can be though of as the group

generated by the reflections in the sides of a triangle with internal angles

(π
l , π

m , π
n). In turn, each triangle group corresponds to a triangular tiling of

either euclidean, spherical, or hyperbolic space.

If 1
l + 1

m + 1
n = 1, the corresponding tiling is of the euclidean plane (Figure 1).

If 1
l + 1

m + 1
n > 1, we obtain a tiling of the sphere (Figure 2). In this case

∆(l, m, n) is finite.

If 1
l + 1

m + 1
n < 1, we obtain a tiling of hyperbolic space (Figure 3).

Figure 1. ∆(2, 3, 6) Figure 2. ∆(2, 3, 3) Figure 3. ∆(2, 3, 8)

The length function

Since the generators s ∈ S have order 2 in W , each w 6= 1 in W can be

written in the form

w = s1s2...sr

for some (not necessarily distinct) si in S. We define the length `(w) ofw to be

the smallest r for which such an expression exists, and we call this expression
reduced. By convention `(1) = 0.

In the case that all m(sα, sβ) = ∞ for sα 6= sβ , we call W a universal Coxeter

group. A Coxeter group W is universal if and only if each w ∈ W has a unique

reduced expression.

We note the following important result: For all s ∈ S and w ∈ W , `(ws) =
`(w) ± 1. Similarly for `(sw).

Geometric representation ofW

Given a Coxeter system (W, S), we aim to construct a representation of W
as a group generated by reflections in a euclidean space. It is too much to

expect these reflections to be orthogonal, but we can construct a suitable

alternative by defining a reflection to be as follows:

A reflection is a linear transformation that sends some nonzero vector to its

negative, and fixes pointwise a hyperplane in some vector space V .

Now let V be a vector space over R, having a basis {γs | s ∈ S} in one-to-

one correspondence with S. We define a symmetric bilinear form B on V as

follows:

B(γs, γs′) = − cos π

m (s, s′)
where we define B(γs, γs′) = −1 if m(s, s′) = ∞. For each s ∈ S we define

a reflection σs : V → V by the rule:

σs(λ) = v − 2B(γs, λ)γs

which fixes pointwise the hyperplane Hγs = {λ ∈ V | B(γs, λ) = 0}.

By this construction we get a unique homomorphism σ : W → GL(V ), such
that:

s 7→ σs

and the group σ(W ) preserves the form B on V . Importantly, we get that

the representation σ : W → GL(V ) is faithful [2, page 113].

Root systems

For ease of notation, we will write w(γs) in place of σ(w)(γs).

The root system Φ of W is defined to be the collection of all vectors w(γs) in
V , where w ∈ W and s ∈ S. These vectors are unit vectors, since the group

σ(W ) preserves the form B on V .

If α is any root, we can write it uniquely in the form:

α =
∑
s∈S

csγs (cs ∈ R)

where the cs coefficients are all of like sign. We call a root α positive and

write α > 0 if all cs ≥ 0. Similarly, call a root α negative and write α < 0 if all

cs ≤ 0. Let Φ+ and Φ− denote the respective sets of positive and negative

roots.

The infinite dihedral group D∞ has an infinite root system, a portion of which

is depicted below:

Figure 4. Root system for D∞ = 〈s1, s2 | (s1)2 = (s2)2 = 1〉

Theorem [2]: Let w ∈ W and s ∈ S. If `(ws) > `(w), then w(γs) > 0. If

`(ws) < `(w), then w(γs) < 0.

We also note that for any w ∈ W , `(w) is equal to the number of positive

roots sent by σ(w) to negative roots [2].

Roots and reflections

For each root α ∈ Φ, there is an associated reflection in GL(V ). Suppose α =
w(γs) for some w ∈ W and s ∈ S. A brief computation show that the action

of wsw−1 on V depends only on α, not the choice of w and s. Hence we can
define tα := wsw−1. We also note that tα acts on V as a reflection sending

α to −α, fixing pointwise the hyperplane Hα := {λ ∈ V | B(λ, α) = 0}.

Let T denote the set of reflections tα, α ∈ Φ. Then we get that:

T =
⋃

w∈W

wSw−1

The correspondence between α and tα is bijective. Nowwe note the follow-

ing result:

Theorem [2]:

(R1) If we have α, β ∈ Φ, such that β = w(α) for some w ∈ W , then

wtαw−1 = tβ , i.e., wtαw−1 = tw(α).

(R2) let w ∈ W , α ∈ Φ+. Then `(wtα) > `(w) if and only if w(α) > 0.

Deletion and Exchange Condition

Here we outline a key fact about the nature of reduced expressions in W ,

which is an integral property of Coxeter groups.

Strong exchange condition: let w = s1...sr (not necessarily reduced) for

si ∈ S. Suppose a reflection t ∈ T satisfies `(wt) < `(w). Then there is an

index i for which
wt = s1...ŝi...sr

where ŝi indicates omission of si. If the expression for w is reduced, then i
is unique.

We obtain the following result as a corollary of the proof of the strong

exchange condition:

Deletion condition: let w = s1...sr for si ∈ S, such that `(w) < r (i.e. the

expression for w is not reduced). Then there exist indices i < j for which

w = s1...ŝi...ŝj ...sr

where a hat again indicates omission. From this we see that if w = s1...sr

for si ∈ S, then a reduced expression for w may be obtained by omitting

an even number of specific si.

Cayley graphs

Cayley graphs provide a convenient way of encoding properties of a group in

a geometric fashion. For a (finitely generated) group G and generating set S,
we define the Cayley graph Cay(G, S) to be the graph such that:

Each element of G is assigned a vertex.

Whenever g ∈ G and s ∈ S, there is an edge from g to gs.

Under the assumption that S generates G, Cay(G, S) is connected, directed
and locally finite. By convention, if a generator s ∈ S has order 2 in G, then

we include a single undirected edge between g and gs.

For example, the Cayley graph for any given triangle group can be realised by

taking the dual graph of its respective tiling:

Figure 5. ∆(2, 3, 6)
Cayley graph

Figure 6. ∆(2, 3, 3)
Cayley graph

Figure 7. Portion of

∆(2, 3, 8) Cayley graph

Closely related to the Cayley graphs of Coxeter groups, is the Davis complex

– an alternate geometric realisation of Coxeter groups that is CAT(0) for

every Coxeter group [4]. Each Coxeter group acts on its Davis complex, in a

way that allows us to hold on to the orthogonality of the associated

reflections, but requires us to forgo linearity.

Contragredient action and the Tits cone

For any subset I ⊂ S, Define WI to be the subgroup of W generated by

all s ∈ I . All subgroups of W that can be obtained in this way are called

parabolic subgroups. Importantly, WI itself is a Coxeter group, relative to

the generating set I .

We now aim to further investigate the action of parabolic subgroups with

particular emphasises on the role of reflecting hyperplanes. To do so, we

will consider how W acts on V ∗ by considering the contragredient action:

σ∗ : W → GL(V ∗)

Throughout, we will denote the elements of V ∗ by f, g, h, ..., and following

Humphreys, we will introduce the following notation: for λ ∈ V and f ∈
V ∗, denote f(λ) = 〈f, λ〉. Then the action of W on V ∗ is characterised by:

〈w(f), λ〉 = 〈f, w−1(λ)〉

where we again use w(λ) and w(f) to denote σ(w)(λ) and σ∗(w)(f) re-

spectively. For each s ∈ S, we define the hyperplane: H ′
s = {f ∈ V ∗ |

〈f, αs〉 = 0} and the associated positive half space: As = {f ∈ V ∗ |
〈f, αs〉 > 0}. Now Define

C =
⋂
s∈S

As and D = C =
⋂
s∈S

As

The action of W and its parabolic subgroups WI can now be analysed by

partitioning D into subsets CI defined as follows:

CI =
(⋂

s∈I

H ′
s

)
∩

(⋂
s/∈I

As

)

At the extremes, C∅ = C and CS = {0}. Now define the Tits cone:

T =
⋃

w∈W

w(D)

This is a W stable subset of V ∗ and is the union of all sets of the form w(CI)
where w ∈ W and I ⊂ S. We can now state the following results [2]:

Theorem:

(a) WI is the stabiliser in W of each point of CI , and T is partitioned by all

sets of the form w(CI) where w ∈ W and I ⊂ S.
(b) D is the fundamental domain for the action of W on T , i.e., the W -orbit

of each point of T meets D at exactly one point.

The imaginary cone and its relationship with the Tits cone

Given a Coxeter system (W, S), a based root system as defined in [1] (Φ, Π)
has the following properties:

Π ⊂ Φ is positively independent

S = {sα | α ∈ Π}
Φ = {w(α) | w ∈ W, α ∈ Π}

Define the Imaginary cone K of a based root system (Φ, Π) as follows [3]:

K =
⋃

w∈W

w(Y ) ⊂ V

where: Y = {v ∈ cone(Π) | B(v, α) ≤ 0, ∀α ∈ Π}

Theorem: Under the assumption that B is non-singular, V is finite dimensional

and Π is finite, the closures K and T of the imaginary cone K and the Tits cone

T are dual cones . That is,

K
∗ = T
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