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A birth death process (BDP) is a continuous time Markov chain which models the
number of particles in a system. This number can either transition up or down
one step at random according to a sequence of birth-rates A\, and death-rates py.
dependent on the current number of particles k.

e My model of interest is on logistic growth, with p;. and A\; given by:

. = kP e Ok (1)

e These models will have the number of particles fluctuate around some carrying
capacity when A\, = . as shown in Fig 1.

e My aim is to estimate the parameters @ = (\, i, «) based on discrete observations
of the population.
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Fig. 1. A sample trajectory of the BDP with A\; and py given in (1) and (2), where A =1, u = 0.05, o = 0.2.

Black dots represent sampling points, which are done at regular time intervals. Here K ~ 32

e Let k; be the ith observation of the population in one given sample, and 7; be the
time between observation (¢ — 1) and 4. Then the log-likelihood function is:

N
06;7.%) =) logpr k(7)) (3)
1=1

(see |1]), where each p;;(f) is the probability that the process transitions from
population ¢ to 7 in time interval ¢.

e To find estimates, we aim to maximise this function with respect to 6.
o However p;;(t) is difficult to find explicitly for general py, and Ay.

o The method of interest to find p;;(¢), by Crawford 2], first finds Laplace transform
fii(s) of the probability p;;(t) as a continued fraction given by:
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where  ap = —Ap—optp-1, ay = 1,
bk? = ST )\k—h T k-1 bl = ST )\07
By = by By—1 + ap By, By =1, B = by,

and then numerically inverts to find p;;.

e Python was used to evaluate the probabilities and likelihood numerically, after which opti-
misation was done using the optimparallel package [4|. The initial value of @ chosen for

the optimisation was done by adding noise to the true val
same initial value of 0.

ue. For each trajectory we used the

e In the interest of program runtime, N = 200 observations were taken for each estimation
routine, with sampling being done on simulations of trajectories. The initial populations were
chosen randomly for each simulated trajectory between 1 and 20.

e From 100 independent trajectories, kernel density estimates of the MLEs are plotted below,

with the true values of the parameters A = 0.3, u = 0.0
blue lines.

5, a = 0.5 indicated by the dashed
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Fig. 2: Distribution of estimates for A (top left), u (top right) and « (bottom) for M = 100 samples, for true population parameters

(A, p, ) = (0.3,0.05,0.5). Red lines indicate the means of the estimates.

e The plots suggest that the MLE used is consistent.

e However, some estimates deviated substantially from the true value. This may be due to a

small sample size, or poor initial guess.
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An important point of discussion is the efficiency of calculation of the probabilities
in (3). We would like to draw a comparison between taking a matrix exponential of
the transition rate matrix () against the Laplace method used here.

e The Laplace transform method is slightly faster when computing p;;(¢) for obser-
vations with low populations (i.e low i, j).

e A large advantage of the matrix method is that once the matrix exponential e%!
truncated at some N is computed for a given time ¢, we have approximations to
all of the transition probabilities p;;(t) as [e?'];; for i, 7 < N without needing to
re-evaluate e%.

Laplace| Truncation Level Matbkxp Matkxp?2

262.43 |N = 100 2.86 27.93
N = 200 3.54 127.65
N = 500 11.07  1546.61

Tab. 1: Table of CPU times (s) for finding MLEs, using different methods of finding p;;(¢). Here MatExp requires only

one computation of the matrix exponential, while MatExp2 reevaluates the matrix exponential for each probability.

e The matrix method proves to be much taster in the case when we take advantage
of reading a single matrix over and over again, and still outperforms in the cases
where we need to recompute, up to a certain truncation level.

e Due to the availability of efficient ways to calculate the matrix exponential, it is
much simpler to implement in practice than the Laplace method of finding p;;(%).

Outlook: EM Approach

As an alternative to maximising (3), we can instead use the EM algorithm, which is
the advocated method in |3]. It involves finding the following function (the E-step):

O

Q(0:;Y,6") = " [E[U|Y,0"(log(\) — ak) +E[Dy[Y, 0" log(y) 5)
_ — E[T,]Y, 0" (\k?e™ " + ku)],

maximising over @ to find ™" (the M-step), then iterating until convergence.
Here, U, D) represent the total number of up or down steps made at state k
respectively, while T} represents the total sojourn time at state k. 'Y represents an
observed sample.

So far, I have been able to find the expectations, but we are still working on im-
plementing the maximisation algorithm and hope to compare its accuracy against
simply maximising (3).
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