
 

 

Methods 

 

Data sets 
 Sample size Density 
data1 350 

 
data2 800 

 
data3 350 

 
data4 950 

 
data5 350 

 

 

Introduction 

 

 

 

 

 

For Bayesian model involving discrete variables, 

it is possible to sample a value of the discrete 

parameter at each iteration using methods such 

as Gibbs Sampling. With algorithms that do not 

support sampling discrete parameters, an 

alternative is to marginalise out the discrete 

parameters from the likelihood. In this project, 

we are interested in analysing which approach 

is more computationally efficient.  

 

Which is more efficient? 

Discrete Latent Parameters

Sample discrete 
parameters using 

techniques such as 
Gibbs Sampling 

Marginalise out 
the discrete 
parameter  

Write the discrete and 
marginalised Bayesian 

models in JAGS

Simulate data sets

Estimate the 
parameters with JAGS

Record computation 
time and analyse 

result

Two-component normal mixture model 

We are using a simple mixture model of two normal 

distributions. Suppose we have two independent 

normal distributions 𝑌1~𝑁(𝜇1, 𝜎1
2), 𝑌2~𝑁(𝜇2, 𝜎2

2). Then 

we have the mixture model 𝑌: 

𝑌 = 𝑍 ∙ 𝑌1 + (1 − 𝑍) ∙ 𝑌2 

Where 𝑧 is the discrete latent variable where 𝑧 = 0 or 

1, with 𝑍~𝐵𝑒𝑟(𝑝), 𝑝 is the mixing component. 
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Result and analysis 

 

 

 

JAGS models and marginalisation  

We have the unmarginalised likelihood: 

Pr(𝑦|𝜇1, 𝜎1
2, 𝜇2, 𝜎2

2, 𝑝1, 𝑝2, 𝑧) = ∏ (𝑝𝑧𝑖𝜑𝑧𝑖(𝑦))
𝐼

𝑖=1
 

 

 

 

Marginalised likelihood: 

Pr(𝑦|𝜇1, 𝜎1
2, 𝜇2, 𝜎2

2, 𝑝1, 𝑝2) = ∏ (𝑝1𝜑1(𝑦) + 𝑝2𝜑2(𝑦))
𝐼

𝑖=1
 

With these likelihoods we wrote six JAGS models: 

 

 

 

 

 

 

 

 

 

*Models with reduced sets are only allowed to use Slice and 

Dirichlet sampling 

 

 

Model 1(m1) 

- Not   
marginalised 

Model 2(m2) 

- Marginalised 
with function 
dnormmix() in 
JAGS 

- Requires the mix 
module 

 

Model 3(m3) 

- Marginalised 
manually with the 
“zeros trick” 

 

Model 2(m2r) 

Model 2 but with 
a reduced set of 
available samplers 

 

Model 3(m3r) 

Model 3 but with 
a reduced set of 
available samplers 

 

Model 1(m1r) 

Model 1 but with 
a reduced set of 
available samplers 

components are clearly identifiable, marginalisation tends to lose its advantage (data4 and data5). 

This inconsistency across the data sets is mainly due to the way Slice sampling interacts with the 

density of our data sets. 

With the marginalised models, model 3 is always less efficient than model 2, attributing to the fact 

that the “zeros trick” tends to force JAGS into using an inefficient sampling strategy.  

Six models led to similar estimates of 

the parameter means and quantiles for 

each data set but varied in the 

computation time required to produce 

one effective sample of the least 

converged continuous parameter. 

m1 took significantly shorter time than 

the other models for all data sets, as 

it’s benefiting from a more efficient 

sampling algorithm. 

Looking at the models with the 

reduced set, the marginalised 

model(m2r) appears to be slightly 

more efficient than the discrete 

model(m1r) in most cases. However, 

for data sets where the two 

 

 

Inference for 𝒛 via conditioning 

For the marginalised models, we are able to infer the 

discrete latent variable through conditional 

probability: 

Pr(𝑧 = 𝑘|𝜇1, 𝜇2, 𝜎1, 𝜎2, 𝑝1, 𝑝2, 𝑦) =
𝑝𝑘𝜑𝑘

(𝑦)

𝑝1𝜑1
(𝑦)+ 𝑝2𝜑2

(𝑦)
 

Where 𝑘 = {1,2}(either component 1 or component 

2), 𝑝1, 𝑝2 are mixing components and 𝑝1 + 𝑝2 = 1 

Through the fact that 𝐸(𝑍 = 2) = 1 − 𝐸(𝑍 = 1), we 

can derive that: 

E(𝑍) = −𝐸(𝑍 = 1) + 2. 

 


