RESOURCE-DRIVEN ACTIVITY NETWORKS: AN ANALYSIS ON AN ANONYMOUS BANK CALL CENTER

Vacation scholars: Zhichong Lu, Neel Date and Samantha Young Supervisors: Peter Taylor and Mark Fackrell

RAN Master Inequality(RMI)

Introduction

Resource-Driven Activity Networks(RANs), which are are established
by Avishai Mandelbaum, Mor Armony, Nitzan Carmeli, Petar Momcilovic
and Galit Yom-Tov[1], are data-based models of networked activities,
carried out by resources. It mainly consists of activity types (e.g. nurse
admission and calling service) and resource pools (e.g. doctors, nurses,
customers and servers with various types). It captures a dynamic mech-
anism: A unit of resource follows a path of its different sub-resource
(e.g. arriving customer and available server) and activities consume
sub-recourses and then produce (possibly different) sub-resources once
completed.

As a starting point, We focus on the call centre data from an Anonymous
Bank in Israel in 1999. The data includes all the calls handled by the call
center, over the period of 12 months from January 1999 until December
1999. In this project, we apply the RAN paradigm to the data and use
simulation to help call center’'s manager plan and control hourly and daily
performance such as how call centers manage their calls so that 80% of
them are answered within 30 seconds. Specifically, we focus on the data
from November weekdays. The reason is that there are large number
of calls in November and there is no holidays which can avoid biased
service time.

There are five different types of service: PS - regular activity; PE -
regular activity in English; IN - internet consulting; NE -stock exchange
activity; NW - potential customer getting information.

Set up

 Five activities (five service types): PS, PE, IN, NE, NW

 Six resources: five types of customers with five different service de-
mand and one type of server (Temporarily, we assume each server
can deal with five different services, we will relax this assumption
later on)

« Six sub-resources: five types of arriving customers and one type of
available servers

« Exogenous net-flow: cumulative net-flow of sub-resources

A = [eps(t) epp(t) ern(t) enp(t) enw(t) s(t)]

where ¢;(t) denotes the cumulative number of exogenous-arriving
calls by the time ¢t (i € {PS,PE,IN, NE, NW}) and s(t) denotes
the cumulative number of net-flow servers by the time t.

* Activity-duration: G is the cumulative distribution function of the du-
ration time of type j activity; G; = 1 — G

G = [Gps(t) Gpp(t) Gin(t) Gypt) Gyw ()]

» Consumption matrix C; ; = amount of sub-resource I consumed by
a single type-j activity:
C _ € _ X
[Cs] [11><5]

where the partition C. denotes the consumption matrix regarding
the 5 types of arriving customers and partition C's denotes the con-
sumption matrix regarding the servers. Similar subscripts apply to
the production matrix

e Production matrix: P = Pt + P:
where PZJ;' (Pl_j) = amount of sub-resource [that remains (leave) in
the system, upon completion of a single activity |

o _05 5_
P—I— _ € _ X
PSJF _11><5_
_ P _]5><5_
P = || =
_Ps i _Ol><5_

* Plan X' = X(t) is a five-dimensional function of time X (¢) = total
number (amount) of type j activities that started during [0, ¢]

X =[Xpg Xpg ... Xaw]"

Note that in the example of call centre we analysed, X(¢), which
shows the planned total number of five different services during |0,],
IS the key decision variable of the manager to manage the volumes
of call services for a period of |0, ¢].

RAN Master Inequality(RMI)

To make a given plan X (¢) feasible, we require enough resources to make it happen. This is
mathematically captured by the RAN Master Inequality. This inequality means that the amount of
sub-resources that need to be consumed must be no more than the amount of current available
sub-resources at any time: CX(t) < PT(GX)(t) + A(t) at every t > 0. This specifies the minimum
amount of resources required to implement the plan X ().

For customers:
CX(t) < PTGX(t) +e(t) = X(t) < et)
For servers:
CsX(t) < PT(GX)(t) + s(t) = X(t) < G * X(t) + s(t)

RMI: X € Dist X(t) <e(t)and X(t) < G X(t)+s(t), V¢t >0

¥
Optimisation goal

Let @Q; (> r) be the number of queueing customers at time t, whose time-in-queue is over r seconds,
so (); (> r) can be seen as one type of queue management plan made by the manager. In the RAN
model, Qf (> r) = [e(t — r) — X(¢)]T. We can see that a given queue management plan (Q; (> 7))
specifies a specific plan X ().

To formalize the manager’s plan mentioned in the introduction part: minimizing the percentage of the
calls that are answered beyond 30 seconds waiting, we can write down the following optimisation plan:

use minimum amount of business resource (e.g. s(t) a shift structure or number of server in our
4__
simulation case) to achieve %g%%gg’g; < 0.2 (there are 61200 seconds per working day and ¢ €

{PS,PE,IN, NE, NW}). Next, we apply the simulation plan to solve with this in a more detailed way.

Simulation Process

Before implementing the simulation, we first did some data analysis mainly on the arrival process and
service time of different types. For convenience, we first exclude two types of calls: IN, since its calls
are answered by a different group of servers, and PE since it is very rare in our data set.

The arriving patterns of different types, which are shown in the following graphs, show that there exists
time-dependent patterns (e.g. there exists some arriving peaks during stock trading time). Therefore,
we decide to simulate different types’ arriving process by using different piece-wise homogeneous
Poisson processes, i.e. a higher Poisson rate will be associated with time periods that are busier.

Histogram of arriving_time_NW Histogram of arriving_time_PS

500
|
2500

500

—

—)

Histogram of arriving_time_NE
5 - § 8
% ﬁ (]
S . o
L i
HT 1
e | I g = :

10 15 20 10 13 20

200

0
Frequency

1500

0 4100
| | | |
1]
0 500
I

10 15 20

arriving_time_NW amiving time NE armang_time_PS

Fig. 1: Arriving process

Similarly, we simulate the service time of different types by dividing them into morning section and
afternoon section, and model each type’s service time using two exponential distribution with two
different parameters.

Histogram of st nw_am ;
Histogram of st_ne_am Histogram of st_ps_am

. [|
: %|—‘ [—I EEJM
L D o

=2 :
0 100 200 300 400 500 600 700

Density
0.0000 0.0015 0.0030
N N S N
Density
0.000 0.003 0.006

0 100 0 400

=

200 400 600 800 1000 st_nw_am

Histogram of st_ne_pm

0 200 400 600 800

Histogram of st_nw_pm Histogram of st_ps_pm

o
8 ~
=
j’—l }:
¥ m
= o
- 1] =
(] o
’dl—_i_r-l—rr. : 8 —
I T T T T T T] < T T T 0

o
0 50 100 150 200 250 300 35 0 100 200 300 400 500 600

Y
0.002 0.004

D

0.000

0.000 0.006

st_ne_pm
st_nw_pm

Fig. 2: Service time distribution

We now provide a brief outline of the simulation itself, which was implemented using Python.We first
pre-generate calls with their arrival and service times as discussed before (piece-wise homogeneous
Poisson process and exponential distribution with time-dependent parameters. This is done by type,
but since all call types arrive independently to each other to the same servers, we need to merge these
calls, preserving their order of arrival times.

Then, we run the discrete event simulation, which moves forward in steps of one second at a time. At
each of these time steps, a call may or may not arrive. Also, a previously busy server may or may not
become free. By inspecting the data structures and suitably updating the variables that govern these
events, the program then makes decisions of whether the call is directed to an idle server or to the
queue. It also inspects whether a call waiting in the queue can be served by a newly idle server, doing
so before a new call in line with the first-come-first-serve rule.

Simulation Result

The simulation was run 100 times under various input parameters. These
iInputs were varied with two differing methodologies, briefly described below:

)
oy
I

o

2 3
- LN
| I

"% call answered in 308
(o]
|
|
-

(n]
7 EEJ =
[| —

|

—

—

—

r-3

—

L

—

I

—

(|

[FR]

1. constant number of available servers (= 20), variable composition across
the two shifts. 12 servers working in the morning and 8 in the evening yielded
the best results, with the median of the percentage of calls answered within
30 seconds across 100 simulations being 98.7%. Further, only about 3% of
customers had to wait in the queue at all, although this was for a median of
33 seconds. Hence, most customers that did have to wait actually did so for
over 30 seconds, but these were very few (most probably at narrow peak
timings).

—
-
-
|

o

fa_

(Mg |
-
|

LN

"% call answerad in 30s=
FJ

| | | | | | | | | | |
1011121314 15 1617 18 159 20

total numbser of

2. constant morning-evening ratio (approximately 3:2 as was found to be the
best in method 1), variable no. of available servers. As expected, keeping the
morning-evening composition constant, decreasing the total no. of servers
decreases the percentage of calls answered within 30 seconds. However,
this decrease is not very dramatic near our current strength of 20 workers. In
fact, having just 14 servers with 9 in the morning and 5 in the evening yields a
rate in excess of 80%, with about 27% of customers having to wait a median
of 95 seconds in this case. Thus, it may be better for the call centre to release
a few of its employees for better resource management.

Concluding Remarks

The RAN framework provides a powerful alternative to traditional queue-
iIng theory to model complex systems involving a large number and many
classifications of interacting servers, activities, intermediate resources, and
customers. Admittedly, our model makes several simplifying assumptions
which do not do full justice in exhibiting the functionality of RANSs, it provides a
simple example of a RAN in action about how RAN can improve the operation
performance of call centre system.

The next step would be to relax these assumptions and investigating the effect
(eg. that each server can deal with each type of service, or introducing cus-
tomer priorities and moving beyond the FCFS system). We can also explore
dividing the day into more than one piece, and having more shift structures in
which the servers can work to better mimic reality. Also, we can further apply
the RAN paradigm to more complex systems such as hospitals.

Acknowledgements

We are grateful to the Vacation Scholarship Program that offered us a valu-
able opportunity to experience how mathematical research is like. We would
like to thank Professor Peter Taylor and Dr. Mark Farkwell for his profes-
sional advice, inspiring guidance, and constant encouragement throughout
the project.

References

[1] Avishai Mandelbaum. “Resource-Driven Activity Networks (RANS), arising from “Theom-
pirical” Research at the Technion SEELab”. In: Data-driven Queueing Challenges (Aug.
2021).

