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The PALAVA Model: Pathway-Annotated-Latency Variational Autoencoder
We present a VAE modification to make use of existing pathway annotations
in a similar fashion to f-scLVM. The model modifies only the decoder portion
of the original VAE, by assigning each pathway its own latent variable.

Consider a set of ! genes {#$, … , #'} and a set of ) vectors {*$, … , *+}, where
each *, is a Boolean vector of size ! indicating which genes are in pathway -:

*, = [0, 1 , … , 0, ! ], where 0, 3 = 41, if gene #: is in pathway -0, otherwise
For a latent representation E with F elements, where F > ) , the first )
elements of E are each annotated with their own pathway H, and decoder I,,
which takes in a single value and has output dimension !, representing that
pathway’s expression (details below). The remaining F − ) unannotated
elements of z, named EK are given a single decoder IK, a standard neural-
network with input dimension F − ) and output dimension m, representing
gene expression not attributed to any pathway. The expectation of the final
reconstruction L′ is just the sum of all the expressions:

N(LP) =R
,S$

+

I,(T,) + IK(EK)

Each annotated decoder I, consists of two column vectors V,
,W and V,

XYZ,
and two neural-networks I,,W and I,XYZ , whose input dimensions are
hyperparameters [ and \ , equal to the dimensions of ],

,W and ],
XYZ

respectively. Their output dimensions are the number of genes in and not in
the pathway respectively i.e. the number of 1s in *, and the number of 0s in
*,. The inputs to the neural-networks are the matrix products V,

,WT, and
V,

XYZT,. Their outputs represent the gene expression for genes in H, and not
in H, respectively. These outputs are concatenated and reordered to give the
expression of all ! genes attributed to the -th pathway.

The same group sparsity prior used by oi-VAE is placed on each V-
-F and

V-
^_`, controlled by sparsity hyperparameters a-F and a^_` respectively.

b-F2~Gamma
[ + 1
2 ,

a,Wg

2 ; V-
-F~N j, b-F×l

b^_`2~Gamma
\ + 1
2 ,

aXYZg

2 ; V-
^_`~N(j, b^_`×l)

where l is the identity matrix and Gamma(∙,∙) has shape and rate parameters.
This means that higher a^_` values make it more likely for any V-

^_` to reduce
to j, at which point that T- will only influence the expression of genes
annotated as belonging to the -th pathway. The equivalent is true of a-F. We
choose higher a^_` values to ensure each pathway decoder contributes
mostly to genes annotated as belonging to the pathway.

Finally, we must assess which genes the model has included in a given
pathway. For this we calculate the variance of each gene’s expression
associated with that pathway over all cells, in order to partition the genes
into an ‘in’ and ‘out’ group. That is, with 0 cells, we calculate
nop( L′- q, 1 , … , L′- q, 0 ] for each gene q, where L′-[q, )] gives the expected
expression of gene q in cell ) associated with pathway -. We then plot a
histogram of these values for all genes to determine an in/out threshold.

Experiment – more at https://github.com/ljdoig/PALAVA
We tested the model on simulated linear data, constructed using the
loadings and activations structure below, with 1000 genes, 1000 cells and 5
factors. We then sampled the loadings r and activations s, from either N(0,1)
or N(0, 0.32) for sparse and dense factors respectively. The final data matrix
used for the simulation was sampled from N(r ∗ s, 0.0012)

We supplied the model with the first two loading structure columns as
pathways. Error was applied to pathway 0 by sampling from wxpF^_yy-(0.07)
for each element, leading to 15 false negatives and 57 false positives:

As mentioned earlier, there is no equivalent of a loadings matrix for VAE, so
we will use the reconstruction of the data, the learned latent representations
(activations) and the learned pathway 0 to assess the model.

Introduction
In all living organisms, genes are expressed differently from cell to cell based
on the biological processes each cell is undergoing. Understanding which
groups of genes are responsible for different biological processes is key to
explaining the traits present in cells and organisms.

Existing biological pathway libraries, like MSigDB or REACTOME, are of
great utility in this process and were used as the basis for inferring pathways
by f-scLVM [1], a linear method based on factor analysis. Here, we build on
that idea to propose our own non-linear model based on variational
autoencoders (VAE), taking inspiration from the output-interpretable VAE
(oi-VAE) framework published by Ainsworth et al. [2]

Linear and Non-linear Factor Analysis
Factor analysis attempts to infer the underlying structure of a dataset by
mapping high-dimensional data to a low-dimensional set of latent variables,
or factors. Inferring gene pathways from single cell expression data can be
abstracted to factor analysis, where:

• observations are cells
• attributes are genes
• factors are gene pathways: groups of genes expressed together in cells

Linear methods such as PCA model factors as linear combinations of
attributes and attempt to find a matrix decomposition of the data:

Figure 1:

The loadings matrix maps the high-dimensional attributes (genes) to low-
dimensional factors (biological pathways), while the activations are the low-
dimensional representations of each cell, corresponding to the active
pathways in that cell. Since the pathways are just linear combinations of
genes, they are easily interpretable but limited by simplicity. Contrast this
with the highly versatile, non-linear dimension reduction offered by VAE:

Figure 2:

Here, the encoder and decoder are neural-networks. The encoder takes the
high-dimensional data-point as input and outputs the parameters to a
multivariate normal distribution from which the latent representation is
sampled. The decoder then attempts to reconstruct the original data-point
from this latent representation. The use of neural-networks allows great
flexibility in what relationships learned, although this does come at the cost
of interpretability of the latent representation, since the factors are not
simply linear combinations of genes and therefore no equivalent of a
loadings matrix exists.
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Further Information – email me at Lachlan@Doig.org
Github for code and simulations: https://github.com/ljdoig/PALAVA
Background on neural-networks: https://www.3blue1brown.com/topics/neural-networks
Background on autoencoders and variational autoencoders: https://avandekleut.github.io/vae/
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Conclusion
PALAVA offers the flexibility of VAE, while incorporating valuable prior
pathway information from pathway databases to kickstart factor-learning.
Initial experimentation has verified the model’s potential in
understanding linear data and correcting annotation error. Further
experimentation and refinement is required to ensure the model is
robust to error and more complex data, and to reduce the number of
hyperparameters required to train the model. Ultimately we hope to see
the application of the model to genuine single-cell RNA-seq data.

PALAVA: a neural-network model for inferring genetic pathways from single-cell data
Lachlan Doig, School of Mathematics and Statistics, The University of Melbourne, with supervisor Heejung Shim

We see the data was reconstructed successfully and the specified latent
representations were learned! Furthermore, the variance metric correctly
determined which genes belonged in pathway 0: based on a threshold
of 9×10|} identified from the histogram, genes were classified with only
1 false negative and no false positives, meaning the model removed
almost all the errors we supplied to the pathway.

I,XYZ

I,,W
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