Introduction

One method of defining a graph colouring is by way of graph homomorphism, a vertex mapping that preserves the existence of edges: $\chi(G) \leq t \Longleftrightarrow G \rightarrow K_{t}$. The colour of each vertex is its image under this mapping.
Applying this definition to oriented graphs we obtain the following definition.

Definition 1 (Oriented Graph Colouring). A mapping from the vertices of G to a set of colours such that:

1. $c(u) \neq c(v)$ for every arc $u v$ in G
2. $c(u) \neq c(y)$ for every pair of arcs $u v$ and $x y$ with $c(v)=c(x)$ [1]

Figure 1: colouring of an oriented graph
Definition 2 (Oriented Chromatic Number). $\chi_{o}(G)$ is the smallest k such that there is an oriented colouring of G with k colours. [1]

From this concept, two key paths of enquiry occur;

1. how to determine $\chi_{o}(G)$ algorithmically, and
2. the existence of oriented graphs such that reversing any arc reduces $\chi_{o}(G)$.

Binary linear program to determine $\chi_{o}(G)$

$\min \sum X_{i}$
s.t. $\quad \sum_{i \in C} X_{u, i}=1 \quad u \in V$

$$
\begin{array}{rlrl}
X_{u, i}+X_{v, i} & \leq X_{i} & u v \in A, i & \in C \\
X_{u, i}+X_{v, j}+X_{u^{\prime}, j}+X_{v^{\prime}, i} & <4 & u v, u^{\prime} v^{\prime} & \in A \\
X_{i} & \in\{0,1\} & i & \in C \\
X_{u, i} & \in\{0,1\} & u \in V, i & \in C
\end{array}
$$

Theorem 1 The binary linear program above determines $\chi_{o}(G)$.
The constraints limit the scope of the binary linear program to valid oriented colourings. We have $X_{i}=1$ when colour i is used. $X_{u, i}=1$ when colour i is used on vertex u. Constraint 1 ensures each vertex has exactly 1 colour. Constraints 2 and 3 are the constraints from the definition of an oriented colouring.
The objective function minimises the number of colours used. By definition the smallest k such that there is a valid oriented colouring with k colours is $\chi_{o}(G)$.

Note: As there are no efficient algorithms to solve binary linear programs, this is not an efficient method for determining $\chi_{o}(G)$ of an oriented graph.

Reverse criticality

Definition 3 (Reverse criticality) An oriented graph G is reverse critical if the reversal of any arc in G decreases $\chi_{o}(G)$.

In looking for graphs that are reverse critical, we start by looking at cycles. The oriented chromatic number of orientations of cycles is fully classified in [1].

Theorem 2 An orientation of a cycle is reverse critical if and only if it is a directed cycle with $n \equiv 2(\bmod 3)$ vertices.

Figure 2: a reverse critical directed cycle

Figure 3: a directed cycle that is not reverse critical

Oriented cliques

Recall that a clique is a graph on n vertices for which $\chi(G)=n$. This motivates the following definition.
Definition 4 (Oriented Clique). An oriented graph G on n vertices is an oriented clique if $\chi_{o}(G)=n$.
Theorem 3 An oriented clique is an oriented graph where all pairs of vertices are connected by a path of length 1 or 2.

Definition 5 Let G and H be oriented graphs. Denote by $G \bowtie H$ the oriented graph constructed by connecting G and H via a universal vertex v, such that there is an arc from each vertex in $V(G)$ to v, and from v to each vertex in $V(H)$. [1]
Theorem 4 (Reverse critical clique construction). If G and H are reverse critical oriented cliques, then $G \bowtie H$ is a reverse critical oriented clique.
Iterating this construction, starting with $P_{3} \bowtie P_{3}$, yields reverse critical oriented cliques with n vertices and $m=2+(n+1) \log _{2}\left(\frac{n+1}{4}\right)$ arcs, where n is of the form $2^{t}-1$.

Figure 4: reverse critical clique construction
Iterating with $H=K_{1}$ in the construction yields reverse critical cliques with n vertices and $m=\frac{n^{2}-1}{4} \operatorname{arcs}$, where n is odd.

Definition 6 (Alternative reverse critical clique construction). For fixed k, begin with k vertices. For each sequence $\{+,-\}^{k}$, add a vertex where the arcs between the new vertex and the original k vertices are directed according to the entries in the sequence. This oriented graph has $n=2^{k}+k$ vertices and $m=k 2^{k}$ arcs.

Figure 6: alternative reverse critical clique construction for $k=1,2,3$

Minimising and maximising arcs in cliques

By computer search we find the reverse critical cliques with the least and most arcs for n from $1-9$. Denote these values as $s(n)$ and $l(n)$ respectively. note: there are no reverse critical cliques with 2 or 4 vertices.

n	$s(n)$	$l(n)$	Upper bound
1	0	0	0
2	-	-	1
3	2	2	2
4	-	-	4
5	5	6	6
6	8	9	10
7	10	12	14
8	13	16	18
9	15	$21-24$	24

Upper bound:
There are $\binom{n}{2}$ pairs of vertices in a reverse critical clique, m of these pairs are directly connected by an arc. Consider labelling the arcs in a reverse critical clique with all pairs of vertices that they are part of a directed 2path between. Each arc must have at least 1 label to be critical and each pair of vertices will appear twice. Therefore, there are at least $\frac{m}{2}$ unique pairs labeled. From this, we obtain the inequality $m \leq\left\lfloor\frac{2}{3}\binom{n}{2}\right\rfloor$ providing an upper bound for the number of arcs in a reverse critical clique. As oriented graphs have integer number of arcs, we can take the floor of the upper bound.

Problems for further investigation

- Are the sequences $s(n)$ and $l(n)$ monotone increasing?
- Is there a counting argument that will provide an improved upper bound for $l(n)$?

Acknowledgements

I would like to thank my supervisor, Dr Christopher Duffy for being very generous with his time and insights and making this project so approachable and interesting. I would also like to thank the School of Mathematics and Statistics for giving me this amazing opportunity.

References

[1] Sopena, Eric. (2015). Homomorphisms and colourings of oriented graphs: An updated survey. Discrete Mathematics. 339. 10.1016/j.disc.2015.03.018.

