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Introduction

Classical electromagnetism, when cast into the framework of special relativity, has five basic features

A Potential Gauge Symmetry Field Strength Tensor Field Equations An Invariant Action

These fundamental features of electromagnetism, in a generalised form, persist into the foundation

of our modern theory of force fields, Yang-Mills theory. Through its adoption of Lie groups and

Lie algebras , this theory takes the template of Maxwell theory and gives a diverse range of new

physical field theories that continue to be essential to our understanding of fundamental interactions.

Note: This poster uses the Einstein summation convention. Summation over repeated indices is implied.

Electromagnetism

Special Relativity

In special relativity, everything happens in a flat 4-dimensional space-time called Minkowski space.

It is equipped with the scalar product X · Y = XµηµνY ν

The matrix ηµν is called the Minkowski metric, with ηµν = diag(1, −1, −1, −1) in Cartesian

coordinates.

Positions in Minkowski space-time are given by four-vectors Xµ = (ct, x, y, z), with indices

µ = 0, 1, 2, 3 (0 being the time ordinate) and c being the speed of light.

covectors have lowered indices, such as Xµ, and are related to their vector twin by the Minkowski

metric Xµ = ηµνXν

The four derivative ∂µ is the gradient over space-time, with ∂µ = (∂t, ~∇)

A Lorentz transformation is a linear map on Minkowski space that preserves the scalar product.

Bringing Relativity to Electromagnetism

In the non-relativistic theory, we can define the scalar and vector potentials φ(x, t) and A(x, t) for a
general configuration of the electric and magnetic (spatial) vector fields E and B to be such that

E = −∇φ − ∂A
∂t

, B = ∇ × A

In four-dimensional space-time, we can package the scalar and vector potentials into a single

new potential in the form of a four-vector,

Aµ =
(

φ/c
A

)
, Aµ =

(
φ/c
−A

)
This is called the four potential. We can also define a one-form potential defined on an

infinitesimal space tangent to the space-time manifold at all points, A = Aµdxµ

For a given configuration of E and B fields, Aµ is not unique. There is a gauge symmetry between

potentials related by the gauge transformation

Aµ → Aµ + ∂µχ

Where χ is some arbitrary (differentiable) scalar function. Potentials related by gauge transformations

produce identical physical E and B fields.

The Electromagnetic Field

We can also combine the electric and magnetic vector fields into a single tensor field over space-time.

Wewrite the combined electromagnetic field as either a tensorF µν (a 4x4 antisymmetric matrix)

or as a two-from F on 4-dimensional space-time.

Fµν = ∂µAν − ∂νAµ, F = 1
2Fµνdxµ ∧ dxν = dA

The two-form has 6 degrees of freedom, one for each component of the electric and magnetic

fields. We can also define the Hodge dual

?Fµν = 1
2εµνρσFρσ

The Relativistic Maxwell’s Equations

Maxwell’s equations in a vacuum can be simply described in the relativistic framework by two linear

partial differential equations

∂µF µν = 0, ∂µ ? F µν = 0

The Invariant Action

Another way to specify the behaviour of the electromagnetic field is using the principle of stationary

(or least) action: For a given functional S(Aµ) called the action, the ’true’ potential field is the one that

corresponds to a stationary point in the action.

The action that correctly recovers Maxwell’s equations is:

S = − 1
4µ0

∫
R4

d4xFµνF µν

Yang-Mills Theory

Lie Groups and Lie Algebras

At the heart of extending gauge theory beyond the realm of Maxwell are the concepts of Lie groups

and their Lie algebras. Every Yang-Mills theory is founded upon a Lie group. Electromagnetism is itself

Yang-Mills theory, based on the Abelian Lie group U(1).

Figure 1. The manifold structure of a Lie

group G with its Lie algebra g given as the

tangent space at the identity.

Lie groups and Lie algebras are intimately related structures.

A Lie group is a group G which is also a manifold, meaning

it can be described as a higher-dimensional surface that

permits a smooth parametrisation.

A Lie algebra g associated with any Lie group G is an in-

finitesimal vector space tangent to the identity of G.

Its basis vectors Xa are called the infinitesimal

generators of G.

Formally, for Lie groups with matrix representations, we

define g as the space of X ∈ G such that eitX ∈ G for

all t ∈ R
The Lie algebra has a bilinear operation [·, ·] called the

Lie Bracket that obeys the Jacobi identity. For matrix

Lie groups, [A, B] = AB − BA

A standard choice of basis for the Lie algebra are the generators T a such that TrT aT b = 1
2 δab.

Example: the standard generators of the Lie group SU(2) are the Pauli matrices,

σx =
(

0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
These span the Lie algebra su(2), the vector space of traceless Hermitian matrices.

Generalising Fields with Lie Algebras

As in electromagnetism, we can define a gauge potential Aµ:

Each element belongs to the Lie algebra Aµ ∈ g.

With the generator basis T a, Aµ = Aa
µT a

Can also define a potential one-form A = iAµdxµ

The force fields of Yang Mills theory can be described as either a tensor field F µν called the

field strength tensor or as a curvature two-form F

Fµν = ∂µAν − ∂νAµ − i[Aµ, Aν ], F = dA + A ∧ A

These objects are again Lie-Algebra valued and can be expanded as F µν = F a,µνT a

The Yang-Mills Equations

For a Lie algebra-valued object φ, the covariant derivativewith connection Aµ is Dµφ = ∂µφ−i[Aµ, φ].
The covariant derivative allows us extendsMaxwell’s equations to the non-commutative case: theYang-

Mills equations

DµF µν = 0, Dµ ? F µν = 0

Note these equations are not linear → self-interaction.

The Invariant Action

The Lorentz-invariant action that recovers the Yang-Mills equations is

S = − 1
4g2

∫
d4xF a

µνF a,µν = − 1
2g2

∫
d4xTrFµF µν

Where g is the coupling constant.

The gauge symmetries under which this action is invariant come from the gauge group, the group of

fields in space-time valued with Ω(x) from the underlying Lie group G. It acts on the gauge fields as

Aµ → ΩAµΩ−1 − iΩ∂µΩ−1, F µν → ΩF µνΩ−1
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Figure 2. Yang-Mills theory also allow us to understand the potential Aµ

as a connection relating internal degrees of freedom w in matter at

different points in space-time when we allow for a simple gauge

symmetry under w → Ω(x)w


