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Motivations and background

Consider two types of topological objects in R3 — line and surface de-

fects. These have a physical role in which they impose symmetries. Line

defects are one-dimensional curves labeled with a group element from

a group G, denoted Lg, g ∈ G. Similarly, surface defects are two-

dimensional surfaces with an attached group element from a different

group H , denoted Dσ,where σ ∈ H . These can interact both with them-

selves, through fusion, and with each other, wherein a line defect passes

through a surface defect whereby the surface acts on the line defect.

Surface fusion and line-surface interaction are illustrated below through

figures 1 and 2.

Figure 1. Line-surface interaction

Figure 2. Surface fusion

For the purpose of this poster, only boundless surface and line defects

will be considered. In this poster, this scenario shall be looked into; the

consistency conditions will be investigated and the associated algebraic

structure worked out.

Defects as groups

A Simple Case – Line and Surface Defects in Isolation

Given a set of line defects, between them one can define an operation

of fusion (∗) such that

Lg ∗ Lh = Lgh.

With this there is a group. Associativity is inherited from G, and inverses

are determined as follows: (Lg)−1 = Lg−1 . As the line defects are topo-

logical curves in R3 space, they can move around each-other without

intersection, resulting in the order of fusion between two lines losing

meaning. Subsequently, the group of line defects is abelian. Similarly,

there is a group formed by surface defects and their respective fusion

operation. This different group will not necessarily be abelian as R3 does

not provide enough space to move two surface defects past eachother.

Surface and line defect interactions

With regard to line and surface defect interactions, we shall consider

only line defects passing through surface defects at an individual point.

When a line defect passes through a surface defect, we would like it to

remain a line defect in the original group of line defects. In this sense,

we can consider a line defect mapping to a line defect under surface

defect crossing. As we are developing our defect structure via groups,

this leads to surface defects behaving as automorphisms of the group of

line defects. That is, Dh ∈ Aut(line defect group).

Orientation of defects

In order to give meaning to the order of fusion (i.e., which surface or line

defect is on which side of the operator), one must impose an orientation

to the objects.

Surface orientation

The topological surfaces in consideration have normal vectors. Say that

two surface defects can fuse if their normals are pointed in the same

direction. The surface defect on the left of the fusion operation will be

the surface whose normal is pointing into the other (Figure 2). If two

surface defects have opposing directions, then this is equivalent to taking

the inverse of one of the surfaces and then fusing. That is, to reverse

orientation one can take the inverse of the surface defect (Figure 3).

Figure 3. Surface inverse

orientation
Figure 4. Line inverse

orientation

Line orientation

While line defects are abelian and can move around each-other in R3, in

order for the surface defects to act on them in a well-defined manner the

line defects must also have orientation. The line will be equipped with

an arrow as its orientation. From this, a line defect can be acted on by

a surface defect when the surface defect’s normal vector is in the same

direction as the line’s arrow (see Figure 4). A line defect’s inverse will

have the opposite orientation.

Computing the group of defect surfaces

The group of line defects is abelian. All finitely generated abelian groups

are isomorphic to a direct sum of primary cyclic groups (cyclic groupswith

orders of a power of a prime) and powers of Z. As such, automorphisms

of cyclic groups will first be considered.

For the function Φ : G → G to be an automorphism, it must fulfill the

homomorphism requirement of

Φ(gh) = Φ(g) ◦ Φ(h), ∀g, h ∈ G.

Inner automorphisms of a group G are automorphisms of the form

Φh : g 7→ hgh−1, h ∈ G. For an abelian group G, these are the identity

function. Hence, only outer automorphisms are nontrivial.

For now, let G = Zm. Recall that an element n ∈ Zm can be expressed

as n = gn by cyclic construction. Consequently, automorphisms satisfy

Φ(n) = Φ(g)n.

From this, each automorphism can be characterised bywhere it maps the

generator. Denote Φσ(g) = σ where g is the generator. Automorphisms

must also be bijective. This is equivalent to Zm being generated by σ.
This holds if and only if m and σ are coprime. Thus, for Zm, it has the

automorphisms

{Φσ : h 7→ σh| gcd(m, σ) = 1}.

For Z, if the integers are considered the additive group ZN as N extends

to infinity, then the only automorphisms are determined to be Φ1 and

Φ−1 (if we consider Φ to be {Φσ : g 7→ g ∗ σ| gcd(m, σ) = 1}).

To extend this to finitely generated abelian groups of distinct factors, one

can take the direct sum of the automorphisms from each of its respective

factors. This results in the automorphisms of that composite group being

combinations of the automorphisms of its factors. That is, if G = A ⊕ B
where A and B are distinct primary cyclic groups, then the automor-

phisms of G are given by {Φσ ◦ Ψθ|Φσ ∈ Aut(A), Ψθ ∈ Aut(B)}. So for a

group of line defects A of the form

A = Z ⊕ ZN1 ⊕ ... ⊕ ZNm

where Ni are distinct powers of primes, the set of surface defects B can

be described by

B = Aut(Z) ⊕ Aut(ZN1) ⊕ . . . ⊕ Aut(ZNm)
= {Φ(a,b1,...,bm) | a ∈ {−1, 1}, gcd(bj, Nj) = 1}

where Φσ retains its mapping of the generator to σ. To extend this to not

necessarily distinct group factors, we must also consider automorphisms

that permute indistinct factors. For example, if G = Z2 × Z2 then Ψ :
(a, b) 7→ (b, a) is also an outer-automorphism of G. So for a group of line

defects G isomorphic to a finitely genererated abelian group, the group

of surface defects is all of its automorphisms, which is the group of all

compositions of the automorphisms of the cyclic factors of G and the

permutations of its identitical factors.

Thus the set of surface defects has a group structure, with D−1
σ = Dσ−1 ,

associativity inherited from its bijective nature and the identity given by

De. This group is not generally abelian, as it is constructed bypermutation

of the automorphism compositions.

Figure 5. 2-category horizontal composition

Figure 6. Horizontal composition physical interpretation

Imposed consistency conditions

By considering line and surface defects as groups in and of themselves,

associativity holds with their own fusions. That is,

(Lg ∗ Lh) ∗ Lk = Lg ∗ (Lh ∗ Lk)

and

(Dσ ◦ Dθ) ◦ Dφ = Dσ ◦ (Dθ ◦ Dφ)

or equivalently,

Lgh ∗ Lk = Lg ∗ Lhk and Dσθ ◦ Dφ = Dσ ◦ Dθφ.

This has a physical effect, with the outputs of the fusion orders as in

figure 7 being equivalent.

Figure 7. Line fusion associativity

From the surface defects acting as line defect automorphisms, it also

follows that

Dσ(Lg ∗ Lh) = Dσ(Lg) ◦ Dσ(Lh).

It is natural to nowwonderwhat properties the last combination of three

defects have — two surfaces and a line. In this circumstance we have

two possible arrangements, (Dθ ◦Dσ)(Lg) and Dσ(Dθ(Lg)) as depicted in
Figure 8. As Dµ is a bijective morphism ∀µ ∈ H , these two arrangements

should be equivalent. That is,

(Dθ ◦ Dσ)(Lg) = Dσ(Dθ(Lg)).

Figure 8. Two surfaces, one line

Defects as structured by 2-categories

Researchers including Bartsch et al.[1] have generalised the structure of

defects described through a categorical lens. Consider the group of line

defects expressed as a one-object category with invertible endomor-

phisms representing the line defect elements. Then one can extend this

to a 2-category by introducing morphisms between the morphisms. If

these morphisms between morphisms are made to be the surface de-

fects, then they are invertible. This is illustrated in Figure 9.

Figure 9. 2-category structure

Figure 10. 2-category vertical composition

Under this construction, each of the prior consistency conditions hold,

with surface defect fusion being equivalent to vertical composition of the

2-morphisms (Figure 10) and line defect fusion equivalent to composition

of the 1-morphisms. There is, however, an additional composition in 2-

categories, with horizontal composition of 2-morphisms (Figure 5). The

physical interpretation of this is depicted in Figure 6.

This is equivalent to an operation � between surface defects that fulfills

(Dσ(Lg)) ∗ (Dθ(Lh)) = (Dσ�Dθ)(Lgh)

which is found by equating Lk in Figure 6.
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