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Introduction

Upon finishing high school, Ian Macdonald wrote a paper,

orginally meant to be a supplementary chapter to a textbook

that has been lost, concerning some results in Euclidean geom-

etry. This paper was never finished or published. This led him

to some important results in Algebraic Geometry, namely prov-

ing the Weil Conjectures for symmetric products. A few of the

results in this unpublished paper are the subject of this poster.

The n-line and its results

An n-line is a collection of n lines in the plane, L = {`1, . . . , `n},
with two properties:

1. No two lines are parallel

2. No three lines are concurrent

First a simple theorem:

Theorem 1 (Miquel, [Miq36]). Given a three-line, L =

{l1, l2, l3}, and three points P1, P2, P3, where P1 2 `1, P2 2
`2, P3,2 `3, then the circles A12P1P2, A13P1P3, A23P2P3 meet

at a point.

Inverting this result around any point yields the following equiv-

alent results:

Theorem 2. Given three circles c1, c2, c3 with a point Q
such that c1 \ c2 = {Q,A3}, c1 \ c3 = {Q,A2}, c2 \ c3 =

{Q,A1} Given P1 2 c1, P2 2 c2, P3 2 c3, the three circles

A1P2P3, A2P1P3, A3P1P2 meet at a point K.

Theorem 3. Given a circle or line c3 and four points

A2, Q,A1, P3 2 c3 and four circles c1, c2,�1,�2, such that

A2, Q 2 c1, Q,A1 2 c2, A1, P3 2 �1, P3, A2 2 �2 and c1\ c2 =
{Q,A3}, c2 \ �1 = {A1, P2},�1 \ �2 = {P3, K},�2 \ c1 =

{A2, P1} Then P1, P2, K,A3 are either collinear or concyclic.
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Figure 1: Theorem 2 and Theorem 3

Cli↵ord’s Chain

Two non-parallel lines intersect at a point. With a three-line,

there are three such intersection points, and these intersection

points lie on a circle, the circumcircle of the three-line. With a

four-line, there are four such circumcircles, and these four

circles meet at a point, known as the Wallace point of the

Four-Line [Wal06]. With a five-line, there are five such Wallace

points, and these lie on a circle, known as the Miquel circle.

This chain, in most cases, continues indefinitely. More formally:

Definition.Given an n-line, L = {`1, . . . , `n}, where n � 2

and let Li = L\{`i}.
1. if n = 2 then the Cli↵ord point of L is contained in `1 \ `2

2. If n is odd, then the Cli↵ord circle of L is the circle which

contains the Cli↵ord points of L1,L2, . . . ,Ln

3. If n is even and greater than 2, then the Cli↵ord point of

L is the point contained in the intersection of the

Cli↵ord circles of L1, . . . ,Ln

The existence of a Cli↵ord point or circle requires a theorem.

Theorem 4 (Cli↵ord, [Cli70]).Given an n line, L with

n � 2

1. if n is even then the Cli↵ord circles of L1, . . . ,Ln meet at

a point

2. if n is odd then the Cli↵ord points of L1, . . . ,Ln lie on a

circle.

Here we shall only show that for a given k 2 Z�3, Cli↵ord’s

chain holding for n = 2k implies that Cli↵ord’s chain holds for

n = 2k + 1. Let A be a subset of {1, 2, . . . , n} and let (A) (or
{A}) denote the Cli↵ord circle (or point) associated with L\A.
In Figure 3, a line between Cli↵ord point and a Cli↵ord circle

indicates that the point lies on the circle. The inductive

hypothesis gives the black lines, which is the configuration in

Theorem 3. Hence, the Cli↵ord points of L1,L2,L3,L4 lie on

a circle, yielding the red lines. Iterating this over all subsets of

size 4 of {1, 2 . . . , n} shows Cli↵ord’s chain holds for

n = 2k + 1. The rest of the proof is similar in nature.
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Figure 2: Wallace’s Theorem, case n = 4 of Theorem 4
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Figure 3: The inclusion of Cli↵ord points in Cli↵ord circles

This argument is very general and thus a similar method can

be employed to obtain other results.

De Longchamps’ Chain

If we consider a three-line, as before we have the circumcircle of

the three-line. Given a four-line, for each subset of three lines

there is a circumcircle. There are four such circumcircles and

the centres of these four circumcircles, the circumcentres, lie on

a circle, the Steiner circle of the four-line [Ste27]. Given a

five-line, there are five such Steiner circles and the centres of

these Steiner circles lie on a circle. This continues indefinitely.

More formally:

Definition.Given an n � 3 line L = {`1, . . . , `n}, let
Li = Ln\`i,
1. If n = 3 the centric circle of L is the circumcircle

2. If n > 3, the centric circle of L is the circle which

contains the centres of the centric circles of L1, . . . ,Ln

Theorem 5 (de Longchamps, [DeL77]). Let L be an n-line.

1. The centric circles of L1, . . . ,Ln, meet at a point

2. Let Ci be the centre of the centric circle of Li. Then,

there exists a circle K such that C1, . . . , Ck 2 K
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Figure 4: Steiner’s Theorem, case n = 4 of Theorem 5

An Analytic Approach to the n-line

Alternatively we can think of lines as sets of complex numbers.

Any line that does not pass through the origin can be written

in the form [Mor00]

`i = {x 2 C| x̄ = ti(x� pi)}

Where pi 2 C⇥
and ti =

�p̄i
pi
. This line is the set of points

equidistant to 0 and pi. Hence, an n-line L is described

algebraically. In this set up we can again prove Cli↵ord’s Chain

and De Longchamp’s Chain. Define for an n-line L and

i, r 2 {1, . . . , n}

fi(L) =
Y

j2{1,...,i�1,i+1,...,n}
(ti � tj)

sr(L) =
X

1j1<···<jrn

tj1tj2 . . . tjk

And subsequently for k 2 {0, 1, . . . , n� 1}

ck(L) =
nX

i=1

xit
n�1�k
i
fi(L)

Hence,

Theorem 6.Given an n-line L and 0 2 {1, . . . , n� 1}

c̄k(L) = (�1)
nsn(L)cn�1�k(L)

Theorem 7.Given an n-line L and k 2 {0, . . . , n� 2}.
For j 2 {1, . . . , n}, let Lj = L\{`j}, then

ck(Lj) = ck(L)� ck+1(L)tj

From these identities De Longchamps’ and Cli↵ord’s Chain

follow.

Theorem 8.The centric circle of L is

K = {x 2 C|x = c0(L)� c1(L)⌧ |, ⌧ 2 C, |⌧ | = 1}

Theorem 9. Let L = {`1, ..., `n}, where n = 2k is even.

Then the Cli↵ord point of L is given by

x =

������

c0(L) . . . ck�1(L)
... . . . ...

ck�1(L) . . . c2k�2(L)

������
������

c2(L) . . . ck(L)
... . . . ...

ck(L) . . . c2k�2(L)

������

If n = 2k + 1 is odd, the Cli↵ord circle of n is given by

8
>>>>>>><

>>>>>>>:

������

c0(L) . . . ck�1(L)
... . . . ...

ck�1(L) . . . c2k�2(L)

������
������

c2(L) . . . ck(L)
... . . . ...

ck(L) . . . c2k�2(L)

������

�

������

c1(L) . . . ck(L)
... . . . ...

ck(L) . . . c2k�1(L)

������
������

c2(L) . . . ck(L)
... . . . ...

ck(L) . . . c2k�2(L)

������

⌧ : |⌧ | = 1

9
>>>>>>>=

>>>>>>>;

In fact we need the determinants in the denominators to be

non-zero. This is a condition which is not always met. A

geometric equivalent to this can be found in [Car20].
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