Moduli space of spatial polygons

Yixiang Wang (yixiang3@student.unimelb.edu.au), supervised by Prof. Paul Norbury
2023/2024 Mathematics and Statistics Vacation Scholarships Program, The University of Melbourne

Introduction

This project will explore the volume form of a n -sided polygon in \mathbb{R}^{3} under $S O(3)$ group. We will start by formulating the problem into a well-known solution, and then use sym plectic reduction to achieve our goal. Ultimately, we will give an explicit symplectic (volume) form of the space.

Figure 1:Example of 5-sided polygon in \mathbb{R}^{3}
Background
Symplectic geometry
A symplectic manifold is a pair (M, ω) where M is a smooth manifold and ω is a closed and non-degenerate 2 -form on M.

Symplectic reduction
Let (M, ω) be a symplectic manifold with a Hamiltonian action of compact Lie group G and moment map $\mu: X \rightarrow \mathfrak{g}^{*}=L i e(G)^{*}$. If 0 is a regular value of μ s.t. G acts freely on $M=\mu^{-1}(0)$, then M / G is a symplectic manifold with symplectic structure induced by ω.

- Moment map

Let (M, ω) be symplectic manifold and a Lie group G acts on M via symplectomorphisms. Then any $\xi \in \mathfrak{g}$ induces a vector field to describe the infinitesimal action of ξ. The vector at $x \in M$ is:

$$
\left.\frac{d}{d t}\right|_{t=0} \exp (t \xi) \cdot x
$$

The moment map for \mathbf{G}-action is $\mu: M \rightarrow \mathfrak{g}^{*}$ s.t.
$d(\langle\mu, \xi\rangle)_{e}=\omega\left(\left.\frac{d}{d t}\right|_{t=0} \exp (t \xi) \cdot e, \cdot\right.$

Moduli space of spatial polygons

Take $r=\left(r_{1}, \ldots, r_{n}\right)$ as a tuple of positive numbers and consider an n -sided polygon in \mathbb{R}^{3} with each edge v_{i} has length r_{i}. The space of all such polygons is denoted as $M(r)$. It's easy to see that the edge v_{i} correspond to a vector in 2-sphere $S_{r_{i}}$, which gives a map

$$
\begin{aligned}
\mu: S_{r_{1}} \times \ldots \times S_{r_{n}} & \rightarrow \mathbb{R}^{3} \\
\left(v_{1}, \ldots, v_{i}\right) & \mapsto v_{1}+\ldots+v_{i} .
\end{aligned}
$$

Notice that 0 is a regular value of μ if there is no solution to $\epsilon_{1} r_{1}+\ldots+\epsilon_{n} r_{n}=0$ with $\epsilon \in\{ \pm 1\}$, and we will assume his in the following text.
A polygon satisfies $v_{1}+\ldots+v_{n}=0$. So $M(r)=\mu^{-1}(0)$ which is a submanifold of $S_{r_{1}} \times \ldots \times S_{r_{n}}$ of dimension $2 n-3$ ($S_{r_{i}}$ has dimension 2).
Besides, we want the polygons to be invariant under rotation. So the space we are interested in is $\mathcal{M}(r):=\mu^{-1}(0) / S O(3)$, which is a manifold of dimension $2 n-6$.

Moment mapping for $S O(3)$
Consider the sphere S_{r} of radius r in \mathbb{R}^{3}. We give it the symplectic form that is $1 / r$ times the usual area form

$$
\omega_{e}(v, w)=\frac{\operatorname{det}(v, w, e)}{r^{2}}
$$

with $e \in S_{r}, v, w \in T_{e}\left(S_{r}\right)$. Since $S O(3)$ acts on symplectic manifold via sympletomorphisms, this gives a collection of flows via $\exp (t \xi)$ for $\xi \in \mathfrak{s o}(3)$.
One can show that $\mu: S_{r} \rightarrow \mathfrak{s o}(3)^{*} \simeq\left(\mathbb{R}^{3}\right)^{*} \simeq \mathbb{R}^{3}$ is a moment mapping for $S O(3)$ action on S_{r}, by showing the following equality holds:

$$
(d\langle\mu, \xi\rangle)(v)=\omega_{e}\left(\left.\frac{d}{d t}\right|_{t=0} \exp (t \xi) e, v\right)
$$

where $\langle\mu, \xi\rangle$ is a Hamiltonian function and $\langle.,$.$\rangle is the stan-$ dard inner product in $\mathbb{R}^{3}, v \in T_{e} S_{r}$
As a result, we have:

$$
\langle v, \xi\rangle=\frac{\operatorname{det}(\xi \times e, v, e)}{\|e\|^{2}}
$$

and the moment map for $S O(3)$ action on $S_{r_{1}} \times \ldots \times S_{r_{n}}$ of spheres is the addition map μ.

The symplectic structure on $\mathcal{M}(r)$

The symplectic space $\left(S_{r_{1}} \times . . \times S_{r_{1}}, \omega\right)$ with a moment map μ guarantee a symplectic structure on $\mathcal{M}(r)$ by symplectic reduction. To compute the symplectic pairing of two tangent vectors to $\mathcal{M}(r)$ we lift them to $S_{r_{1}} \times \ldots \times S_{r_{n}}$ and take the pairing there.
Consider an oriented polygon in \mathbb{R}^{3} given by $\left(v_{1}, \ldots, v_{n}\right) \in$ $\Pi S_{r_{i}}$, define the length $\ell_{i}=\left\|v_{1}+\ldots+v_{i+1}\right\|$. Let $\mathcal{M}^{\prime}(r) \subset$ $\mathcal{M}(r)$ be the locus where all ℓ_{i} are non-zero and each $v_{1}+\ldots+$ v_{i} is not co-linear to v_{i}. Then we can define triangle T_{i} that span the initial vertex and the $v_{1}+\ldots+v_{i}$ and $v_{1}+\ldots+v_{i+1}$ edge. Define θ_{i} to be the dihedral angle from T_{i} to T_{i+1}. Then the $\left\{\ell_{i}, \theta_{i}\right\}_{i=1, \ldots, n-3}$ are smooth coordinates for $\mathcal{M}^{\prime}(r)$.

Figure 2:Example of 5-sided polygon in \mathbb{R}^{3}
For each i, there exists a bending flow that twists the first part of the polygon around the i-th diagonal. This fixes every coordinate except θ_{i}. Lifting to $\mu^{-1}(0)$ the flow rotates v_{1}, \ldots, v_{i+1} about the direction of $v_{1}+\ldots+v_{i+1}$, which one can prove is the Hamiltonian flow for the function ℓ_{i}. Besides, his preserves $\mathcal{M}^{\prime}(r)$ except θ_{i}, on which it acts by $\theta_{i} \mapsto \theta_{i}+t$, or:

$$
d \ell_{i}(\cdot)=\omega\left(\frac{\partial}{\partial \theta_{i}}, \cdot\right)
$$

Volume form of $\mathcal{M}(r)$
Using the results one can show that the symplectic form on $\mathcal{M}^{\prime}(r)$ is:

$$
\omega=d \theta_{1} d \ell_{1}+\ldots+d \theta_{n} d \ell_{n}
$$

and as a result the volume of $\mathcal{M}(r)$ is $(2 \pi)^{n-3}$ times the usual Euclidean volume of the image the map $\left(\ell_{1}, \ldots, \ell_{n-3}\right)$.
One can see that the volume is a piecewise polynomial. There exists a beautiful closed form for the volume of $\mathcal{M}(r)[1]:$

$$
\operatorname{volM}(r)=-\frac{(2 \pi)^{n-3}}{2(n-3)!} \sum_{\mathrm{I} \text { long }}(-1)^{n-|I|} \epsilon_{I}(r)^{(n-3)}
$$

with $I \subseteq\{1,2, \ldots, n\}$ and

$$
\epsilon_{I}=\sum_{i \in I} r_{i}-\sum_{i \in\{1, \ldots, n\} \backslash I} r_{i}
$$

I is long if $\epsilon_{I}>0$.

Further extensions

- Establish the relationship between the two symplectic forms.
- Show that the volume form is independent of the order of the edge
- Show that the volume is independent of the choice of the ℓ s
- Explore the factorization property of the volume form under different chamber conditions

References

1] A. Mandini

The duistermaat-heckman formula and the cohomology of moduli spaces of polygons.
J. SYMPLECTIC GEOM., 2014.
[2] A. Wright.
The moduli space of spatial polygons.
2019.

