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Introduction

Imagine you’re a robot navigating your way through an obstacle field, a captain
steering around a coast, or a lithographer packing transistors into a microchip.
You can model obstacles as polygons in the plane and construct a ’skeleton’ to
help avoid collisions.

The scope of this project is to find an approximation algorithm to the Minimum
Euclidean Skeleton problem. This project lies at the intersection of Graph theory,
Euclidean geometry, and combinatorial optimisation. We embed a graph (rep-
resenting a polygon) into a Euclidean metric space, where we care about the
geometric relationships between the vertices and edges.

Polygonal Euclidean Skeletons

Polygons and Edges
• Let Ω be a simple polygon in the plane (no holes or self-intersections)

• Let V be the set of n vertices of Ω, where no three vertices of V are collinear;
a convex vertex of Ω has interior angle less than π rad

• An edge of a skeleton is a Euclidean line segment; a maximal length edge
has its end-nodes on the boundary of Ω

• A set of edges E is connected if there exists a polygonal chain (piecewise
linear curve) between any two edges in E that lies entirely along edges in E
(i.e. you can trace a path between any two points in E that uses only edges
in E)

Fig. 1: A skeleton (n = 6) Fig. 2: A skeleton (n = 10) Fig. 3: A skeleton (n = 60)

Skeletons

• A skeleton S of Ω is a set of edges such that the line segment P1 − P2
between any two points P1, P2 that lie in the exterior to Ω intersects Ω iff
P1 − P2 intersects (at least one) edge in S

• A minimum skeleton is the skeleton S′ of Ω with smallest cardinality

An Equivalent Problem

In [1], it is shown, with sufficiency and necessity, that any set S of maximal length
edges that:

1. Intersects every convex vertex of Ω

2. Is connected

is a skeleton of Ω.

There exists a (computationally expensive) exact algorithm [1] to generate a
minimum Euclidean skeleton, and this project seeks an approximation algorithm
to minimise the skeleton size.

Heuristic: The problem of approximating a minimum skeleton of Ω reduces to
finding some way to cover all convex vertices with as small a set of connected
edges as possible. To do this we can employ a combination of the Steiner tree on
graphs and the notion of a visibility graph of a polygon...

Visibility Graphs and Steiner Trees in Graphs

Visibility Graph The visibility graph of a polygon Ω is the graph G where each node
in G represents a vertex of Ω, and nodes u, v are adjacent iff the line segment u − v
lies entirely within the interior or on the boundary of Ω (i.e. there is a ’line-of-sight’
between vertex u and vertex v).

Fig. 4: Visibility graph (n = 10) Fig. 5: (Approximate) Steiner tree (n = 10)

Steiner Trees in Graphs: Let G = (V,E) be an undirected graph with non-negative
edge weights c and let S ⊆ V be a subset of vertices, called terminals. The Steiner
tree problem asks for the minimum-weight tree of G that covers all terminals.

Applying the Steiner Tree:

1. Let the set of terminals be S = Conv(Ω), the set of convex vertices of the polygon

2. Let the edge-weights c = 1 be constant

3. Let G be the visibility graph of the polygon

4. Then the minimum-weight Steiner tree of G will approximate the minimum skele-
ton of Ω!

However, the Steiner tree problem is NP-Hard ! So to utilise the Steiner tree, we need
to approximate the Steiner tree problem itself! [2]

Metric Closures and Minimum Spanning Trees

Metric Closure: The metric closure of a graph G is the complete graph in which each
edge is weighted by the shortest path distance between the nodes in G.

Fig. 6: Metric closure of above visibility

graph

Fig. 7: Subgraph of metric closure

induced by convex vertices (terminals)

Fig. 8: MST of induced subgraph of

metric closure

Minimum Spanning Tree: A minimum spanning tree (MST) is a subset of the
edges of a connected, edge-weighted undirected graph that connects all the vertices
together, without any cycles and with the minimum possible total edge weight.

Complete Heuristic: Compute the MST of the subgraph (induced by the convex ver-
tices of Ω) of the metric closure of the visibility graph of Ω

Results

Bounds on Minimum Euclidean skeletons: The number of vertices of Ω is an upper
bound for |S′|, since the boundary of Ω is a feasible skeleton. Additionally, |Conv(Ω)|/2
is a lower bound for |S′|, since we need to intersect every convex vertex. This heuris-
tic seemed to produce a skeleton with≈ 0.6n edges, compared to the optimal solution
using the exact algorithm [1] of ≈ 0.4n edges.

Fig. 9: Skeleton size Fig. 10: Ratio of skeleton size to polygon size

Next Steps

The (naive) visibility graph computation employed was the most computationally
expensive part of the algorithm; but there exist alternate faster methods that could
be implemented. The Steiner tree approximation was very fast (≈ 2mins on an
n = 4000 instance), and returns a solution with weight within a 2 − 2

|Conv(Ω) | factor
of the optimal Steiner tree [2]. In fact, from my data, it appears that the cardinality
of the skeleton produced by the heuristic is within the same factor of the exact solution.

It would be interesting to explore alternate heuristics for the Minimum Euclidean Skele-
ton problem, and to adapt the existing heuristic, perhaps by using a non-constant cost
function to weight the edges, or by generating a vertex-edge or edge-edge visibility or
intersection graph to reduce the number of edges required.
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Fig. 11: An n = 4000 skeleton solution


