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INTRODUCTION
Self-Organised Criticality (SOC) is a concept intro-
duced by Per Bak, Chao Tang and Kurt Wiesenfeld
(BTW) in 1987 [1] which attempts to explain the com-
plex behavior of critical systems.
A critical state is defined as being a state of a system
such that, as a result of the interactions between indi-
vidual elements, a minor disturbance has the poten-
tial to cause events of any scale- including those con-
sidered as catastrophic. This phenomenon is com-
monly encountered in nature, notably moving tec-
tonic plates resulting in earthquakes.
In order to model SOC, BTW introduced the so
called Sandpile Model [1]. We modify this model to
assess the necessary conditions for criticality.

SOC IN THE MODEL
In a critical state, a power law distribution exists be-
tween the magnitude of a disturbance to a system, x,
and it’s frequency, f(x) [1] ie∃α, β st f(x) ≈ βxα.
We plot the frequency distributions on log-log scales
of three measures of avalanche size:
• Number of Topples
• Area (no. unique sites which topple)
• Amount of Loss (grains lost from grid)
A mass vs time plot is also produced.

INITIAL SIMULATIONS
When X = Y , we see stabilisation of the total mass
and evidence of a power law relationship (Figure 1),
indicating the critical state is reached.

The deviations from linearity, notably the drop-off at
the tail are likely due to the use of a finite sized grid.
This is supported by the observation that the larger
the board, the better the linear fit as there is higher
potential to capture catastrophic events.

FIGURE

Figure 1: Original BTW model, 50x50 board, T= 300,000

MODIFICATIONS

Randomness
To test whether the criticality is dependent on ran-
domness, we dropped every grain of sand onto the
middle cell of the board and found that the differ-
ence in linearity of the frequency graphs is minimal
with R2 = 0.891 as opposed to R2 = 0.903.
We also tested the impact of introducing randomness
into the system. Instead of a pile automatically top-
pling when it reaches the threshold c we assigned
each cell a probability pi,j of toppling each time a
grain is added.

For cells with height, c ≤ hi,j ≤ 2c and constant
α ∈ (0, 1), let pi,j = α · (hi,j − c + 1).
This did not impact the system’s ability to reach a
critical state (R2 = 0.943). Thus, we do not have
evidence that the criticality of the sandpile model is
dependent on, nor impaired by randomness.
Wind
We introduced wind into the system to investigate
the impact on criticality. Wind may occur in any of

the four directions. Instead of one grain falling to the
opposite side, two fall in that direction.
Results with equal (p = 0.25) probability of breeze
in any direction at each topple do not deviate from
what is expected of a critical system, however
when we introduce the concept of gusts lasting for
{10, 100, 1000} topples we see less evidence of the
power law as shown in Figure 2 where R2 = 0.393.

Figure 2: Log-log frequency graph of avalanche topples
Gust length 1000, Probability p = 0.25
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BOUNDARY CONDITIONS
The ability to lose grains is essential to criticality. We
assess the necessary amount of output opportunity
for the criticality to be unaffected.

We modelled both a annular “board”, halving the
number of avenues to lose sand grains, and a torus
which only allows grains to leave from 2 cells.

Figure 3: Boards used to assess boundary conditions
L to R: Square, annulus & torus with outlet (red)

The mass vs time trajectory to the critical state
is very similar. The distinction is the number of
topples needed at each time step. For T = 500, the
total topples are 2948, 3610 and 8461 respectively
as the outlet is reduced.

Our simulations highlight the adaptability of these
systems by showing that they can organise them-
selves into a critical state given there is an avenue
for loss, no matter how small that avenue is, empha-
sising the self-organising component of SOC.

BTW SANDPILE MODEL
Consider an X × Y dimensional grid. Let the num-
ber of grains of sand on cell (i, j) at time step t be
gt(i, j) where i ∈ [1, X], j ∈ [1, Y ], t ∈ N0.

We run each simulation for T timesteps, at each time
step t we choose a random position to drop one
grain of sand, that is,

gt(i, j) = gt−1(i, j) + 1

When number of grains on cell (i, j) reaches a
threshold value c = 4, the sandpile becomes un-
stable and a grain of sand from this cell topples over
to each of it’s direct neighbors, that is,

gt(i, j) = gt(i, j) − 4

gt(i ± 1, j) = gt(i ± 1, j) + 1

gt(i, j ± 1) = gt(i, j ± 1) + 1

If i ∈ {1, X} or j ∈ {1, Y }, the grains which
would usually topple out of the bounds of the grid
are lost from the system.
This model reaches a critical state when the number
of grains(mass) on the grid stays relatively constant.

INITIAL SIMULATIONS
When X = Y , we see stabilisation of the total mass
and evidence of a power law relationship (Figure 1),
indicating the critical state is reached.

The deviations from linearity, notably the drop-off at
the tail are likely due to the use of a finite sized grid.
This is supported by the observation that the larger
the board, the better the linear fit as there is higher
potential to capture catastrophic events.


