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Introduction

Howcanwe estimate the total size of a networkwhen it is impossible

to see its entire structure?

Consider a network consisting of objects and links between them.

The network can be represented as a graph G = (V, E).
This poster explores how random walk techniques can be used to

estimate global properties of the graph whilst only having access to

information about the node we are currently at.

The Sample Dataset

Numerical results in this poster are based on the sample Les Miser-

ables Network. In the Les Mis network, nodes are characters of the

novel, and edges are formed if two characters appear in the same

chapter of the novel.

The Les Mis Network has |V | = 77 and |E| = 254.
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RandomWalks on a Graph

Consider the multi-graph G = (V, E). Let

d(i) = the degree of node i

f(i, j) = the number of edges between i and j

n = |V | = the number of nodes in G

m = |E| = the number of edges in G

We consider two types of random walks on G.

The Discrete Time RandomWalk (DTRW)

Suppose the DTRW is at node i after n steps. At step n+1, the walk
jumps to a neighbour of i uniformly at random.

The position Xn of the SRW after n steps is described by a Discrete

Time Markov Chain with state space V and transition matrix

Pij =
{

f(i, j)/d(i), if ij ∈ E,

0, if ij /∈ E
(1)

Properties of the DTRW

The stationary distribution of the DTRW is

π(i) = d(i)
2|E|

= d(i)
2m

The expected return time to a node i is

E(Ti) = 1
π(i) = 2m

d(i) (2)

The Continuous Time RandomWalk (CTRW)

Suppose the CTRW arrives in node i at time t. The walk stays at i
for an exponentially distributed amount of time with parameter d(i),
before jumping to a neighbour of i uniformly at random.

The position Xt of the CTRW at time t is described by a Continuous
Time Markov Chain with state space V and generator

Qij =


−d(i), if i = j,

f(i, j), if i 6= j and ij ∈ E,

0, otherwise

(3)

Properties of the CTRW

The stationary distribution of the CTRW is

π(i) = 1
|V |

= 1
n

The expected return time to a node i is

E(Ti) = |V |
d(i) = n

d(i) (4)
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Estimating the Number of Edges |E|

The form of (2) suggests that the number of edges in G can be es-

timated using a DTRW as

m̂(i) = Ê(Ti)d(i)
2 (5)

To estimate m in practice we use the following algorithm

1. Start at node i and simulate DTRW until returning to i

2. Record first time of return T 1
i

3. Repeat k times to get k return observations [T 1
i , ..., T k

i ]
4. Terminate simulation once the estimate has 95% confidence of

being within ±ε of the true value.

Theoretical Performance of the Estimator

The Markov property implies that each T j
i for j∈{1,..,k} is indepen-

dently and identically distributed. Using the Central Limit Theorem

with (3) and assuming a large enough k, the distribution of m̂(i) can
be approximated by the below

m̂(i) ∼ N

(
m,

d(i)2σD(i)2

4k

)
∼ N

(
m,

m × d(i)σD(i)2

2s(i, k)

)
(6)

σD(i)2 gives variance of first return time to i under the DTRW.

s(i, k) = d(i)×k
2m gives the expected number of steps in k returns

to node i.

Then if we simulate returns from node i it takes roughly

s95(i, k) = 1.962 × md(i)σD(i)2

2ε2 (7)

steps to have 95% confidence that |m̂ − m| ≤ ε.

Estimating the Number of Nodes |V |

Likewise, the form of (4) suggests that the number of nodes in G
can be estimated using a CTRW as

n̂(i) = Ê(Ti)d(i) (8)

To estimate n in practice we use the same algorithm as above but

using a CTRW instead of the DTRW.

Theoretical Performance of the Estimator

Once again, the Markov property implies that each T j
i for j∈{1,..,k}

is independently and identically distributed. Using the Central Limit

Theorem with (8) and assuming a large enough k, the distribution of

n̂(i) can be approximated by the below

n̂(i) ∼ N

(
n,

d(i)2σC(i)2

K

)
∼ N

(
n,

2 × m × d(i)σC(i)2

s(i, k)

)
(9)

σC(i)2 gives variance of first return time to i under the CTRW

s(i, k) = d(i)×k
2m gives the expected number of jumps in k returns

to node i.

Then, if we simulate returns from node i it takes roughly

s95(i, k) = 1.962 × 2md(i)σC(i)2

ε2 (10)

steps to have 95% confidence that |n̂ − n| ≤ ε

Comparing Estimation Speed

In both techniques, the properties of the estimator depend on the

node we begin the random walk from.

(6) and (9) demonstrate that both estimators are unbiased. However

their speeds of convergence are both given by the term

α(i) = d(i)σ(i)2 (11)

Nodes with smaller values of α(i) converge faster.

Variance of first return times

The term α(i) depends on the variance of the first return time to i
under the given random walk. In both the discrete and continuous

case, this variance can be computed, but lacks a simple expression.

Importantly, σ(i)2 mostly decreases with d(i) faster than linearly. In

turn α(i) decreases with d(i), and so in both methods, starting at

nodes with higher degrees gives faster convergence!

Numerical Results: Required Steps

We run the estimators above on the Les Mis Network, starting from

three different nodes. Tables show required steps for each nodewith

ε = 5.
Node Degree σ(i)2 Steps

A 36 370 259,630

B 10 23,241 4,535,557

C 1 514,248 10,035,726

Table 1. Steps to Estimate m with ε = 5

Node Degree σ(i)2 Steps

A 36 8.4 23,654

B 10 442.9 345,728

C 1 10,781.4 841,613

Table 2. Steps to Estimate n with ε = 5

Note, even best case scenario requires large number of steps.

Numerical Results: Levels of Accuracy

Figure 1. Distribution of Estimators after 100, 000 steps of DTRW. Green bar

shows true value m = 254.

The SuperNode Technique

Starting from a single node yields slow convergence of estimators.

Avrachenkov, et all (2018) propose the SuperNodemethod for faster

convergence.

In the SuperNode method we contract the graph as follows:

Choose a set of nodes from G: Sn = {i, j, k} ⊂ V .

Contract G so that these nodes are combined into one node S

Edges out of S are given by the set of edges from nodes in Sn to

nodes out of Sn. Any edges between nodes in Sn are removed.

Call the contracted graph G′ = (V ′, E ′)
Let e′ = |E| − |E ′| and v′ = |V | − |V ′| = n(Sn) − 1

We can estimate the parameters of the contracted graph G′ by start-

ing random walks at the SuperNode S. The higher degree of the

SuperNode means these estimates will converge faster than before.

Then we can map the parameters of G′ to the parameters of G

ˆ|E| = ˆ|E′| + e′ and ˆ|V | = ˆ|V ′| + v′

AToy Example

Consider G = (V, E) with |V | = 4 and |E| = 5. Contract graph so

that Sn = {A, B}. The contracted graph G′ = (V ′, E ′) has |V ′| = 3
and |E ′| = 4.

A B

C D

Sn

C D

Numerical Results with SuperNode

There are a variety of ways we can construct the SuperNode. Here

we take Sn to be the three nodes of G with the highest degree.

The tables show the required steps for each node with ε = 5, and
the figure shows the distribution of the estimators after 50, 000 steps
of the walk, in the discrete time case.

Node Degree σ(i)2 Steps

S 71 55 75,269

A’ 36 370 259,630

B’ 22 936 402,005

C’ 19 1,006 372,932

Table 3. Steps to Estimate m with ε = 5

Node Degree σ(i)2 Steps

S 71 2.6 14,108

A’ 36 8.4 23,654

B’ 22 30.7 52,794

C’ 19 33.35 49,470

Table 4. Steps to Estimate n with ε = 5

Figure 2. Distribution of Estimators after 50, 000 steps of DTRW. Green bar

shows true value m = 254.

Further Extensions

Explore how the convergence speed of estimators scales with

graph size.

Explore optimal procedures for construction of a SuperNode.

Understand properties of estimators for other graph parameters.

Investigate how random walk theory can be used to estimate

parameters for directed graphs.
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