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Introduction

Consider a groupGwhich is also a smoothmanifold. If the group has amultiplication function (G×G →
G) and an inverse function (G → G) which are smooth, then G is a Lie Group

ALie Group,G, is a simple Lie group if it is connected and has no non trivial connected normal subgroups,

apart from G itself.

A Lie Group G has a corresponding Lie algebra g. The Lie

Algebra can be thought of as the vector space which is the

tangent space at the identity, equipped with a bracket oper-

ation [· , ·] satisfying the Jacobi Identity:

[X, [Y, Z]] + [Y, [Z, X]] + [Z, [X, Y ]] = 0

In the case of a matrix group, the bracket operation is the

commutator: [X, Y ] = XY − Y X

Should one attempt to classify the complex simple Lie algebras, and thence the compact simple Lie

groups, one might quickly stumble across 4 infinite families of simple classical groups.

Yet the geometric nature of Dynkin Diagrams suggests the possibility of exactly 5 more ’exceptional’

Lie Groups. The onus has now been bestowed upon the inquirer: find explicit examples of these

exceptional groups, or show that they cannot exist. We will investigate the smallest of these groups,

the 14-dimensional Lie Group G2

1. The Classification of Lie Groups

The classification of compact simple Lie Groups generally goes as such: We first find the roots:

Find a maximal torus, T, of the Lie group, that is, a maximal connected and compact abelian

subgroup of G.

Find the complexification of the Lie algebra of T: tC

Find the roots, that is, the α in the dual space of t with:

∃z 6= 0 ∈ gC such that [x, z] = iα(x)z, ∀x ∈ t

The Lie algebra g then decomposes as: gC = tC
⊕

α

gα

where gα = {z ∈ g|x ∈ t =⇒ [x, z] = iα(x)z} are one dimensional root spaces.

We choose a set of simple roots, and then can then use an inner product (derived from the Killing

Form) to convert these roots into a root system. Such an inner product allows us to determine the

length of the roots and angles between them, giving us a root diagram.

Under such an inner product, the angles between roots are very constrained. In particular, only the

angles of π
2 , π

3 , 2π
3 , π

4 , 3π
4 , π

6 , 5π
6 are possible.

The corresponding Dynkin Diagram is made by assigning each simple root and node, and connecting

nodes with edges based on the angle between them. However, such diagrams are very restricted.

Theorem: there are 4 infinite families of connected, irreducible Dynkin Diagrams, and 5 exceptional

ones, namely:

An : , Bn : , Cn : , Dn :

F4 : , G2 :

E6 : , E7 : , E8 :

The Dynkin Diagrams for An, Bn, Cn, Dn correspond to the matrix groups SU(n + 1),
SO(2n + 1), Sp(n) and SO(n) respectively.
Theorem: the Dynkin Diagrams and complex simple Lie algebras determine each other precisely up

to isomorphism.

For a complex simple Lie algebra, there are real forms, whose complexification is the complex algebra.

Two of such are the compact real form, corresponding to compact Lie groups, and the split real form,

whose Lie groups are non-compact. The map from real Lie groups to their corresponding real Lie

algebra is many-to-one.

2. An example: SU(3)

We will find the root diagram and Dynkin Diagram for G = SU(3). The complexified Lie algebra is

gC = su(3)C = sl(3,C), the set of 3 × 3 traceless matrices.

Note that SU(3) has the maximal torus
{

diag(eiθ1, eiθ2, e−iθ1−iθ2), θ1, θ2 ∈ R
}
hence

H1 = diag(i, 0, −i), H2 = diag(0, i, −i) is a basis for t.
H1, H2 along with matrices E12, E13, E23, E21, E31, E32 form a basis for sl(3,C). We then have the

following calculation:

[sH1 + tH2, E12] = (2s − t)iE12
[sH1 + tH2, E13] = (s + t)iE13

[sH1 + tH2, E23] = (−s + 2t)iE23

Hence our roots are ±α = 2s − t, s + t, −s + 2t.
We take the roots α1 = 2s − t and α2 = −s + 2t as simple

roots, since they generate all the roots using only positive or

only negative integer coefficients.

The inner product tells us that all our roots are the same

length, and are at 60◦ from each other, shown on left.

Moreover, the simple roots are at 120◦, so the Dynkin diagram

tells us to join the nodes using one line:

A2 :
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3. The Octonions and Split Octonions

The division algebras: real numbers, complex numbers, quaternions and octonions (and their split

varieties) can all be constructed from the real numbers via the Cayley Dickson construction:

We can define the complex numbers as C = R ⊕ R with multiplication and conjugation as

(a, b)(c, d) = (ac − bd, ad + bc), (a, b) = (a, −b)

The complex numbers are an associative and commutative division algebra. We more commonly write

(a, b) = a + bi where i2 = −1
We can define the quaternions as H = C ⊕ C with multiplication and conjugation as

(a, b)(c, d) = (ac − db, da + bc), (a, b) = (a, −b)

The quaternions are an associative but not commutative division algebra. We more commonly write

(a + bi, c + di) = a + bi + cj + dk where i2 = j2 = k2 = ijk = −1
We can then define the octonions O and split octonions O′, both as H ⊕ H. For the octonions, multi-

plication is defined the same as for the quaternions: (a, b)(c, d) = (ac − db, da + bc). However, for the
split octonions, multiplication is defined as (a, b)(c, d) = (ac + db, da + bc).
Neither the octonions nor split octonions are associative nor commutative, hence cannot be repre-

sented by matrices. However, the octonions (but not the split octonions) are still a division algebra.

Just as the quaternions introduce 2 more orthonormal vectors to the complex numbers, both which

square to -1, the octonions add 4 more orthonormal vectors to the quaternions which all square to

-1. However, the split octonions add 4 orthonormal vectors which square to 1.

4. Cartan’s Construction of G2

It was Elie Cartan and Wilhelm Killing who were the first to classify the simple Lie Groups. In 1908,

Cartan claimed that G2 is the automorphism group of the Octonions, Aut(O).
Any (continuous) automorphism group must preserve the real numbers, R. It can be shown that the

Automorphism group of the octonions is a subgroup of SO(7) which fixes R and preserves the 7-

dimensional cross product on the imaginary octonions (those without a real part): x × y = 1
2(xy − yx)

Theorem: For both the octonions and split octonions, the automorphism group is a 14 dimensional

simple Lie group.

Theorem: Both automorphism groups have 2 dimensional maximal tori, so we say they are of rank 2.

Since the Lie Algebra for a Lie group can be decomposed into gC = tC
⊕

α

gα, we have exactly

14 − 2 = 12 root spaces, corresponding to 12 roots.

There are only 3 possibilities for root diagrams from the rank 2 Dynkin Diagrams (those with 2 dots):

One might notice that the root diagram for A2 is embedded in that for G2. This is no coincidence:

SU(3) is the subgroup of G2 which preserves the unit vector i

Only G2 has a root diagram with 12 roots. We arrive at the following:

Theorem: The automorphism groups Aut(O) and Aut(O′) are of type G2. Moreover, the automor-

phism group of the octonions is the compact real form of G2 whereas the automorphism group of the

split octonions is the split real form of G2 : G′
2

5. A geometric G2

We consider a ’rolling’ ball of radius 1, rolling atop a ’fixed’

ball of radius R>1, without twisting or slipping. We define

a ’point’ in this space as any configuration of the balls. The

rolling ball might be in any rotation of SO(3), and can be in

contact with any point of the ’fixed’ ball. Hence the set of

points is SO(3) × S2.

We can then define ’lines’ in this space as the subset of

points, L ⊂ SO(3) × S2 that a ball with some starting

configuration takes when rolling along a great arc of S2.

If R=3, the symmetry group of this geometry is almost G2. To

get G2 we need to make a few adjustments.

The spin group, Spin(n) is a double cover of SO(n). In the case n = 3, Spin(3) is isomorphic to SU(2),
that is, there is a double cover of SU(2) onto SO(3).
The real projective plane, RP2, is the set of all 1 dimensional subspaces of R3. Each x ∈ RP2 can be

associated with the two points in which the 1 dimensional subspace intersects the sphere S2. In this

sense, we can think of RP2 as the unit 2-sphere, where antipodal points are the same.

We now consider a spinor, that is, a ball that must roll twice to return to its original state, rolling atop

the real projective plane; a sphere whose antipodal points are the ’same’.

The spinor can be in any configuration of SU(2), and can be anywhere on the real projective plane,

RP2. The set of all points is then SU(2) × RP2. The lines are then the subsets of configurations that

are obtained when the spinor rolls along a great arc of RP2.

We consider a second geometry. We define a null subalgebra of the split octonions, O′, to be a vector

subspace V on which the product vanishes. That is, if x, y ∈ V then xy = 0.
In this geometry, the ’points’ are the 1 dimensional null subalgebras. Our ’lines’ are exactly the 2

dimensional null subalgebras.

Note that both geometries are examples of incidence geometries, that is, a collection of objects: points

and lines, and an incidence relation: a notion of a point lying on a line. We then have the following:

Theorem:: (Baez and Huerta, 2014). If and only if R=3, these two geometries are equivalent. That is,

there is an isomorphism between points and lines in the rolling ball and octonion geometries.

An automorphism of the split octonions will preserve null subspaces. Hence, when R=3, the symmetry

group of the rolling ball geometry, that is, the symmetry group that maps lines to lines, is precisely G′
2


