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Introduction

We first try to introduce the notion of a polygon. We say
that a polygon is a collection of vertices connected by a
collection of edges in some cyclic order such that they
begin and end at the same point. As such we allow for
intersecting edges and even vertices with more than 2
coinciding edges (see Figure 1).

Fig. 1: Examples of polygons in the plane

Now finally we lift these polygons from Euclidean 2-
space into Euclidean 3-space and identify polygons that
we equivalent up to isometry. We have thus constructed
our spatial polygons.
Of interest to us is the space of polygons with fixed edge
lengths (but not necessarily direction).
Here consider fixing side lengths r1, r2, r3, r4 in Figure 3
and allowing l1, l2 to vary. One might be able to see the
space of polygons we refer to appears and indeed has
dimension 2 which we call a moduli space.
Important is that this moduli space is a smooth manifold
of dimension 2(n−3)[3] iff there does not exist a polygon
that degenerates to a line in the space. More precisely,
there exists no subset of 1, 2, . . . , n I such that∑

I

ri −
∑
Ic

ri = 0

which allows for a polygon where all edges are parallel
to one another. We define M ′(r) ⊂ M(r) as the smooth
manifold resulting from the removal of all such degen-
erate polygons.

Symplectic Volume

Of interest to us is some notion of volume over these
moduli spaces which we call its symplectic volume. The
calculation of such volumes is the topic of this project.
One might be able to visualise these volumes for n = 4.
Considering Figure 3 we see that diagonal l1 and an
angle on this edge characterises M(r). Indeed it can be
shown that M(r) is exactly a 2-sphere [3] and the area
of said 2-sphere is an example of symplectic volume.
Important are two results from prior literature [2][1].
Define εI(r) =

∑
I ri −

∑
Ic ri We call I long if

εI(r) > 0

Theorem 1 (Mandini) Symplectic volume of M ′(r) is
given by the piecewise polynomial function:

vol M ′(r) =
(2π)n−3

2(n− 3)!

∑
I long

(−1)n−|I|εI(r)
n−3

We note that all of our polygons may be constructed
by pasting together n − 2 triangles all of which share a
common vertex vi and allowing for our polygons to be
‘bent’ about the edges of the triangle. We label all n− 3
non trivial diagonals intersecting with vi l1, l2, . . . , ln−3
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Fig. 2: A labelling of ls

Symplectic Volume

in some reasonable order (see Figure 2) and
the amount that we bend at each diagonal
θ1, θ2, . . . , θn−3.

Theorem 2 (Kapovich-Millson) The volume form
on M ′(r) is

dl1dθ1 . . . dln−3dθn−3

Corollary 2.1 Let f1 = min(r1+ · · ·+ rn−2, rn−1+ rn)
and f2 = max(min(| ± r1 ± · · · ± rn−2|, |rn−1 − rn|)
Symplectic volume of M ′(r) is given by

vol M ′(r) = 2π
∫ f1

f2
vol(M((r1, . . . , rn−2, l)) dl

n = 4

An attempt was made to geometrically prove the
Mandini formula from our given volume form. Here
we prove the n = 4 case.
We first note that our volume in the n = 4 case is as
follows (recall that there is only one diagonal):∫ 2π

0

∫ f1

f2
dldθ = 2π

∫ f2

f2
dl

= 2π(f1 − f2)

Define εI long = |εI|. We now realise that

min(r1 + r2, r3 + r4) =
1

2
(|ε{1,2,3,4}| − |ε{1,2}|)

max(|r1 − r2|, |r3 − r4|) =
1

2
(|ε{1,3}| + |ε{1,4}|)

It thus follows that:

vol M ′(r) =π(|(ε{1,2,3,4}| − |ε{1,2}|)− (|ε{1,3}| + |ε{1,4}|))
=π(|ε{1,2,3}| + |ε{1,2,4}| + |ε{2,3,4}| − |ε{1,2,3,4}|
− |ε{1,2}| − |ε{1,3}| − |ε{1,4}|)

=− 2π

2

∑
I long

(−1)n−|I|εI(r)

As desired.

On the choice of coordinates

A result of the Kapovich-Millson volume form result
is the existence of several different volume forms.
More specifically, we may take any vertex as our
common vertex resulting in several different volume
forms (see Figure 3). Indeed it must follows that the
determinant of the change of coordinates Jacobian
between these coordinate systems must be 1 up to
a sign which is non-trivial.
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Fig. 3: A quadrilateral with both possible diagonals drawn in forming a

tetrahedron

The following theorem was proved inductively.

Theorem 3 Given our desired Jacobian has determi-
nant 1 (up to sign) in the the n = 4 case, any choice
of appropriate coordinates for n ≥ 5 will also have
Jacobian determinant 1.

Permuting side lengths

An interesting corollary that follows from the Mandini
formula is that switching the order of side lengths,
although effecting the polygons formed, will not
change the symplectic volume of the resulting mani-
fold. Here, we show that it is easily derived from 2.1.
We first note that it suffices to show that switching
the n − 1th and nth sides will leave volume invari-
ant. This is true as any set of diagonals li along with
their angles result in a volume form. In this way, we
may always permute consecutive sides with a wise
choice of vertex through which our diagonals pass.
We note that Sn is generated by 2-cycles which im-
plies we may achieve any desired permutation.
We now recall our explicit volume formula:

2π
∫ f1

f2
vol(M((r1, . . . , rn−2, l)) dl

and immediately realise that switching rn−1 and rn
have no affect on our boundary conditions (as rn−1+
rn = rn + rn−1 and |rn−1 − rn| = |rn − rn−1|) nor are
they present in our integrand. We are done.

The relationship between a
partial derivative and n-1

Finally, it was shown that there is a relationship be-
tween differentiation and reduction in the number of
sides of a polygon. Put explicitly:
∂

∂rn

∣∣∣∣∣
rn=0

(volM(r1, . . . , rn)) = 4πvolM(r1, . . . , rn−1)

Which was motivated by Corollary 2.1 and proved
using Theorem 1.

Conclusion

In this project, the symplectic volume of spatial poly-
gons, more particularly the relationship between the
explicit Mandini Formula and our derived integral
form for the symplectic volume using the volume
form described by Kapovich and Millson, was ex-
plored. An elementary proof for the unification of
these two formulae in the n = 4 case was found
and the presence of several volume forms was ex-
ploited when seeking to prove qualities immediately
obvious in one formulaic representation but not in the
other. Perhaps of most interest and certainly worthy
of further exploration is the relationship between the
volume of polygons in higher dimensions. A deriva-
tive relationship was explicitly found to link n-gons
to (n − 1)-gons which might prove helpful in reveal-
ing more of the geometric structure of these volumes
and serve in finding an elementary proof unifying the
two formulae described for arbitrary n.
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