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Motivation

Let’s say a mobile user sitting in a random environment and receives signals from
many transmitters placed according to some deterministic or random process.

Fig. 1: An example of receiver and several transmitters

We are interested in the signal strength received by the user under various con-
ditions of the environment. The signal strengths received by the user are typically
affected by its distance to the transmitters and by physical fading effects which
are often modeled as random variables.

Fig. 2: An example of WIFI signal strength

We aim to study the distribution of the point process of signal strengths experi-
enced by a typical user.
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Model

The model can differ depending on different types of networks. The one studied here is
the most standard model, where we have a receiver placed at the origin of a d dimensional
space Rd, and transmitters placed at locations Ξ = {Xi : i ∈ N} ⊆ Rd\{0} as in figure 1.
We are interested in the signal strength Pi received by the observer from Xi. A standard
assumption is that

• the signal strength received is inversely proportional to the distance between the trans-
mitter and the observer.

– the path loss function l(x) = C|x|−β for some positive constants C and β.

• Another factor that affects the signal strength is known as the propagation effect.

– multipath fading, where the signal strength is reduced due to signals taking multiple
paths and colliding with each other.

– shadow fading, where signal strength is affected due to signals colliding with large
obstacles such as buildings.

We can incorporate these effects into the model via a sequence of independent and iden-
tically distributed random variables S, S1, S2, ..., and the signal strength from transmitter Xi
is then given by

Pi = Sil(Xi) =:
Si

g(Xi)

where g(x) = 1/l(x).
We are interested in the distribution of the process on R+

Π := {Pi}i∈N
and various functions of it. For example, the signal-to-interference ratios {Pi/(

∑
j Pj −

Pi)}i∈N. In wireless networks, it is possible to detect signals from multiple sources, but the
receiver typically only wants one of them. The desired signal is the Pi on the numerator
and the unwanted signals are in the denominator of the ratio. The signal from a particular
source Xi is detectable if and only if SIR(Xi) exceeds the so-called SIR threshold τ > 0.
The probability P (SIR(Xi) > τ ) is usually referred to as the coverage probability, is the
one we are interested in.
Researchers usually study the inverse of the signal strength instead of the original one
since there tend to be many weak signals that cause the approximating Point process to
have a singularity at zero. That is

N = {1/Pi}i∈N = {g(Xi)/Si}i∈N,
and results about N can be easily translated to results for Π.

Fig. 3: An example of propagation process experienced by the receiver

The process N has been called the (independently) propagation (loss) process or path loss
(with fading) process generated by S, g, and Ξ.

Method

Before showing the main results, we first introduce some important definitions
and methods.

Definition 1: A sequence {Xn}n∈N of random variables converges in probability
towards the random variable X if for all ϵ > 0,

lim
n→∞

P (|Xn − x| > ϵ) = 0.

We also need the concept of convergence in distribution of a point process, but
due to technicality, we instead introduce convergence in distribution of a random
variable as the ideas are similar.
Definition 2: A sequence of real-valued random variables X1, X2, ..., with
cumulative distribution functions F1, F2, ..., is said to converge in distribution to
a random variable X with cumulative distribution function F if

lim
n→∞

Fn(x) = F (x),

for every number x ∈ R at which F is continuous.

The main tool for proving the results is called Stein’s method (for backgrounds,
see [2] for a nice survey on this topic). Stein’s method is a powerful technique
in probability theory that bounds the distance of two probability distributions
concerning some probability metric. The choice of the metric depends on the
nature of the approximating distribution. In the case of Poisson point process
approximation, the most widely used is the total variation metric which bounds
the maximum difference in probabilities between two probability distributions.

Definition 3: The total variation distance between the distribution of the random
process N , and the Poisson point process Z is given by

dTV (L(N),L(Z)) := sup
A⊂B(D)

|P (N ∈ A)− P (Z ∈ A)|, (1)

where L(X) denotes the distribution of X.

The general idea of proving convergence using Stein’s method is as follows. we
aim to obtain a bound on the total variation distance between the distributions of
N and Z so that the bound goes to 0 at some suitable rate that is sufficient to
prove convergence in distribution.

Result

One of the results shows that the distribution of N converges to a Poisson point
process under some conditions [1].

Theorem [1]: If {Xi}i∈N and {l(Xi)} ⊂ (0,∞) are both locally finite. For
each σ > 0, S(σ), S1(σ), ... are independent and identically distributed positive
random variables satisfying

(i) S(σ) P→ 0 as σ → ∞.
(ii) There is a function L : (0,∞) → (0,∞) with

E[{i : Ni(σ) ≤ t}] → L(t),

as σ → ∞ for all continuity points of L.
Then the point process {Ni(σ)}i∈N converges in distribution to a Poisson point
process on (0,∞) with mean measure L(t).

Referring to Figure 3, the first condition S(σ)
P→ 0 gives that the chance the

inverse signal power from a given transmitter falls in an interval (0, t) tends to
zero. The second condition ensures the limit is not degenerate, which means
that the mean measure is positive and finite.


