The Seifert-van Kampen Theorem

Guozhen Wu, supervised by Dr.Nora Ganter, The University of Melbourne

Introduction

The Fundamental Groupoid Version

The fundamental group is a powerful tool in the study of topological spaces. A natural question arises when we consider the union of spaces: how do we deduce the fundamental group of the union space from the fundamental groups of individual spaces? The Seifert-van Kampen theorem answers the question partially. In particular, if C is an open cover of the space X that is closed under finite intersection, such that each $U \in C$ is path-connected and contains the basepoint $x_{0} \in X$, then we can write $\pi_{1}\left(X, x_{0}\right)$ in terms of the $\pi_{1}\left(U, x_{0}\right)$'s.

The Fundamental Group Version

Next we try to apply the subdivision trick to fundamental groups to obtain $\pi_{1}\left(X, x_{0}\right)=\operatorname{colim}_{U \in C} \pi_{1}\left(U, x_{0}\right)$. Here we have a problem: once we subdivide a loop, the subdivisions are no longer loops, but mere paths(2.1). In order to turn them into loops, we have to choose a path from x_{0} to each of the end points(2.2). Further more, we want these paths to be in the same elements of C as the corresponding subdivisions, so that every resulting loop also lies in that element.

So for each $U \in C$ we are choosing a path f_{y}^{U} from x_{0} to every $y \in U$. Categorically, this choice corresponds to a functor
$F_{U}: \Pi(U) \rightarrow \pi_{1}\left(U, x_{0}\right)$ which sends a morphism $[g]: y \rightarrow z$ to $\left[f_{y}^{U} * g * \overline{f_{z}^{U}}\right]$. Let $J_{U}: \pi_{1}\left(U, x_{0}\right) \rightarrow \Pi(U)$ denote the inclusion functor, then since C is finite, we can choose the f_{y}^{U} 's such that

1. For any $U \in C, f_{x_{0}}^{U}$ is the constant path at x_{0}
2. For any $U, V \in C, f_{y}^{U}=f_{y}^{V}$ if $y \in U \cap V$
$F:=\left\{F_{U}\right\}_{U \in C}:\left.\left.\Pi\right|_{\mathscr{C}} \rightarrow \pi_{1}\right|_{\mathscr{C}}$ is a natural transformation with $F \circ J=I d$. For every $y \in X$, let $f_{y}^{X}=f_{y}^{U}$ if $y \in U$. Since C covers X, the f_{y}^{X} 's define a functor $F_{X}: \Pi(X) \rightarrow \pi_{1}\left(X, x_{0}\right)$ with $F_{X} \circ J_{X}=I d$. Define
$\mu:\left.\pi_{1}\right|_{\mathscr{C}} \rightarrow \Delta_{\pi_{1}\left(X, x_{0}\right)}$ to be the natural transformation where components are $\mu_{U}=\pi_{1}(i: U \hookrightarrow X)$. A comparison of components gives the following commutative diagrams of functors from \mathscr{C} to Groupoid:

combining the results above we have the following:

Given group G and $\xi:\left.\pi_{1}\right|_{\mathscr{C}} \rightarrow \Delta_{G}$, let $\eta=\xi \circ F$. By the groupoid version of the theorem, $\exists!\tilde{\eta}: \Delta_{\Pi(X)} \rightarrow \Delta_{G}$ s.t. $\tilde{\eta} \circ \gamma=\eta$.
Uniqueness: if $\tilde{\xi} \circ \mu=\xi$ then $\tilde{\xi} \circ F_{X} \circ \gamma=\tilde{\xi} \circ \mu \circ F=\xi \circ F=\eta$, so $\tilde{\xi} \circ F_{X}=\tilde{\eta}$ and $\tilde{\xi}=\tilde{\eta} \circ J_{X}$.
Existence: $\tilde{\eta} \circ J_{X} \circ \mu=\tilde{\eta} \circ \gamma \circ J=\eta \circ J=\xi \circ F \circ J=\xi ;$
Thus $\tilde{\xi}=\tilde{\eta} \circ J_{X}$ is the unique map of cocones required,
$\pi_{1}\left(X, x_{0}\right)=\operatorname{colim}_{U \in C} \pi_{1}\left(U, x_{0}\right)$.

Before tackling $\pi_{1}\left(X, x_{0}\right)$, let us consider $\Pi_{1}(X)$. We can view C as a subcategory \mathscr{C} of Top, where objects are the elements of C with the subspace topology, and morphisms are the inclusion maps. The restriction of the fundamental groupoid functor Π_{1} to \mathscr{C} gives a diagram of groupoids, which has the colimit $\Pi_{1}(X) \cong \operatorname{colim}_{U \in \mathscr{C}} \Pi_{1}(U)$.
To see the result above, given a groupoid $G P$ and natural transformation $\eta:\left.\Pi_{1}\right|_{\mathscr{C}} \rightarrow \Delta_{G P}\left(\Delta_{G P}\right.$ denotes the constant functor at $\left.G P\right)$, we want to find a unique $\tilde{\eta}: \Pi_{1}(X) \rightarrow G P$ such that $\tilde{\eta} \circ \gamma=\eta$, where $\gamma:\left.\Pi_{1}\right|_{\mathscr{C}} \rightarrow \Delta_{\Pi_{1}(X)}$ is the natural transformation with components $\gamma_{U}=\Pi_{1}(i: U \hookrightarrow X)$.

- On objects, we must have $\tilde{\eta}(x)=\eta_{U}(x)$ for $x \in U \in C$.
- On morphisms, given a path f in X, using the Lebesgue number lemma we can subdivide $[0,1]$ into n sub-intervals such that the image of each subinterval I_{k} under f lies in some $U_{k} \in C$. Reparametrizing each $\left.f\right|_{I_{k}}$ to a path f_{k}, we decompose $[f]=\left[f_{1} * f_{2} * \ldots * f_{n}\right]=o_{k=1}^{n}\left[f_{k}\right]$, and

$$
\tilde{\eta}([f])=o_{k=1}^{n} \tilde{\eta}\left(\left[f_{k}\right]\right)=o_{k=1}^{n} \eta_{U_{k}}\left(\left[f_{k}\right]\right)
$$

The above proof for uniqueness almost gives a definition for $\tilde{\eta}$. We just need to verify that it is well-defined.

- On objects, if $x \in U \in C$ and $x \in V \in C$, then $x \in U \cap V \in C$, and $\eta_{U}(x)=\eta_{U \cap V}(x)=\eta_{V}(x)$ by naturality of η.
- On morphisms, if a path f lies entirely in both $U \in C$ and $V \in C$, then f lies in $U \cap V \in C$, and $\eta_{U}([f])=\eta_{U \cap V}([f])=\eta_{V}([f])$ by naturality of η. Generally, given paths f and g in X with $[f]=[g]$, suppose we decompose them as $[f]=\left[f_{1} * f_{2} * \ldots * f_{n}\right]$ and $[g]=\left[g_{1} * g_{2} * \ldots * g_{m}\right]$, where each f_{i} is a path in $U_{i} \in C$ and each g_{j} is a path in $V_{j} \in C$. We want to prove that $\circ_{i=1}^{n} \eta_{U_{i}}\left(\left[f_{i}\right]\right)=\circ_{j=1}^{m} \eta_{V_{j}}\left(\left[g_{j}\right]\right)$.
Since $[f]=[g]$ we can find a path homotopy $H: I \times I \rightarrow X$ from f to g. Using the Lebesgue number lemma again we can subdivide $I \times I$ into $(m n r)^{2}$ sub-squares of equal size such that the image of each $I_{i} \times I_{j}$ under H lies entirely in some $W_{i, j} \in C$.
For $i \in\{1,2, \ldots, \mathrm{mnr}\}$ and $j \in\{0,1, \ldots, \mathrm{mnr}\}$, define $p_{i, j}: I \rightarrow X$ by $p_{i, j}(s)=H\left(m n r s-i+1, \frac{j}{m n r}\right)$. These paths correspond to horizontal edges of the sub-squares;
For $i \in\{0,1, \ldots, \mathrm{mnr}\}$ and $j \in\{1,2, \ldots, \mathrm{mnr}\}$, define $q_{i, j}: I \rightarrow X$ by $q_{i, j}(s)=H\left(\frac{i}{m n r}, m n r s-j+1\right)$. These paths correspond to vertical edges of the sub-squares. It follows that
$\circ_{i=1}^{n} \eta_{U_{i}}\left(\left[f_{i}\right]\right)=\circ_{i=1}^{m n r} \eta_{W_{i, 1}}\left(\left[p_{i, 0}\right]\right)$ and $\circ_{j=1}^{m} \eta_{V_{j}}\left(\left[g_{j}\right]\right)=\circ_{i=1}^{m n r} \eta_{W_{i, m n r}}\left(\left[p_{i, m n r}\right]\right)$. Now it suffices to show that the right hand sides are equal.
We have the following relations:
(a) Observe that for any $i, j \in\{1,2, \ldots, \mathrm{mnr}\}, p_{i, j}(I) \subseteq W_{i, j} \cap W_{i, j+1}$, so $\eta_{W_{i, j}}\left(\left[p_{i, j}\right]\right)=\eta_{W_{i, j+1}}\left(\left[p_{i, j}\right]\right)$, hence $\circ_{i=1}^{m n r} \eta_{W_{i, j}}\left(\left[p_{i, j}\right]\right)=\circ_{i=1}^{m n r} \eta_{W_{i, j+1}}\left(\left[p_{i, j}\right]\right)$ for $j \in\{1,2, \ldots, \mathrm{mnr}\} .(1.1)$
(b) For any $j \in\{0,1, \ldots, \mathrm{mnr}\}, q_{0, j+1} * p_{1, j}$ is homotopic to $p_{1, j+1} * q_{1, j+1}$, so $\eta_{W_{1, j+1}}\left(\left[q_{0, j+1}\right]\right) \circ \eta_{W_{1, j+1}}\left(\left[p_{1, j}\right]\right)=\eta_{W_{1, j+1}}\left(\left[p_{1, j+1}\right]\right) \circ \eta_{W_{1, j+1}}\left(\left[q_{1, j+1}\right]\right)$
$=\eta_{W_{1, j+1}}\left(\left[p_{1, j+1}\right]\right) \circ \eta_{W_{2, j+1}}\left(\left[q_{1, j+1}\right]\right) .(1.2)$
After mnr similar operations we get $o_{i=1}^{m n r} \eta_{W_{i, j+1}}\left(\left[p_{i, j}\right]\right)=o_{i=1}^{m n r} \eta_{W_{i, j+1}}\left(\left[p_{i, j+1}\right]\right)$. (1.3)

Repetitively apply results (a) and (b) to $\circ_{i=1}^{m n r} \eta_{W_{i, 1}}\left(\left[p_{i, 0}\right]\right)$, and we have the desired equality $\circ_{i=1}^{m n r} \eta_{W_{i, 1}}\left(\left[p_{i, 0}\right]\right)=\circ_{i=1}^{m n r} \eta_{W_{i, m n r}}\left(\left[p_{i, m n r}\right]\right)$.

References

[1] May, J.P.(1999). A Concise Course in Algebraic Topology. University of Chicago Press. [2] Hatcher, A.(2009). Algebraic Topology. Cambridge University Press.

