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Introduction
The fundamental group is a powerful tool in the study of topological spaces.

A natural question arises when we consider the union of spaces: how do we

deduce the fundamental group of the union space from the fundamental groups

of individual spaces? The Seifert-van Kampen theorem answers the question

partially. In particular, if C is an open cover of the space X that is closed

under finite intersection, such that each U ∈ C is path-connected and contains

the basepoint x0 ∈ X , then we can write π1(X, x0) in terms of the π1(U, x0)’s.

The Fundamental Group Version

Next we try to apply the subdivision trick to fundamental groups to obtain

π1(X, x0) = colimU∈Cπ1(U, x0). Here we have a problem: once we subdivide

a loop, the subdivisions are no longer loops, but mere paths(2.1). In order to

turn them into loops, we have to choose a path from x0 to each of the end

points(2.2). Further more, we want these paths to be in the same elements of

C as the corresponding subdivisions, so that every resulting loop also lies in

that element.

So for each U ∈ C we are choosing a path fU
y from x0 to every y ∈ U .

Categorically, this choice corresponds to a functor

FU : Π(U) � π1(U, x0) which sends a morphism [g] : y � z to [fU
y ∗ g ∗ fU

z ].

Let JU : π1(U, x0) � Π(U) denote the inclusion functor, then since C is finite,

we can choose the fU
y ’s such that

1. For any U ∈ C, fU
x0

is the constant path at x0
2. For any U, V ∈ C, fU

y = fV
y if y ∈ U ∩ V

F := {FU}U∈C : Π|C � π1|C is a natural transformation with F ◦ J = Id.

For every y ∈ X , let fX
y = fU

y if y ∈ U. Since C covers X, the fX
y ’s define a

functor FX : Π(X) � π1(X, x0) with FX ◦ JX = Id. Define

µ : π1|C � ∆π1(X,x0) to be the natural transformation where components are

µU = π1(i : U ↪→ X). A comparison of components gives the following

commutative diagrams of functors from C to Groupoid:

combining the results above we have the following:

Given group G and ξ : π1|C � ∆G, let η = ξ ◦ F . By the groupoid version of

the theorem, ∃ ! η̃ : ∆Π(X) � ∆G s.t. η̃ ◦ γ = η.

Uniqueness: if ξ̃ ◦ µ = ξ then ξ̃ ◦ FX ◦ γ = ξ̃ ◦ µ ◦ F = ξ ◦ F = η, so

ξ̃ ◦ FX = η̃ and ξ̃ = η̃ ◦ JX .
Existence: η̃ ◦ JX ◦ µ = η̃ ◦ γ ◦ J = η ◦ J = ξ ◦ F ◦ J = ξ;

Thus ξ̃ = η̃ ◦ JX is the unique map of cocones required,

π1(X, x0) = colimU∈Cπ1(U, x0).

The Fundamental Groupoid Version

Before tackling π1(X, x0), let us consider Π1(X). We can view C as a sub-

category C of Top, where objects are the elements of C with the subspace

topology, and morphisms are the inclusion maps. The restriction of the fun-

damental groupoid functor Π1 to C gives a diagram of groupoids, which has

the colimit Π1(X) ∼= colimU∈CΠ1(U).

To see the result above, given a groupoid GP and natural transformation

η : Π1|C � ∆GP (∆GP denotes the constant functor at GP ), we want to find

a unique η̃ : Π1(X) � GP such that η̃ ◦ γ = η, where γ : Π1|C � ∆Π1(X) is

the natural transformation with components γU = Π1(i : U ↪→ X).

• On objects, we must have η̃(x) = ηU(x) for x ∈ U ∈ C.

• On morphisms, given a path f in X , using the Lebesgue number lemma

we can subdivide [0, 1] into n sub-intervals such that the image of each sub-

interval Ik under f lies in some Uk ∈ C. Reparametrizing each f |Ik to a

path fk, we decompose [f ] = [f1 ∗ f2 ∗ ... ∗ fn] = ◦nk=1[fk], and

η̃([f ]) = ◦nk=1η̃([fk]) = ◦nk=1ηUk
([fk]).

The above proof for uniqueness almost gives a definition for η̃. We just need

to verify that it is well-defined.

• On objects, if x ∈ U ∈ C and x ∈ V ∈ C, then x ∈ U ∩ V ∈ C, and

ηU(x) = ηU∩V (x) = ηV (x) by naturality of η.

• On morphisms, if a path f lies entirely in both U ∈ C and V ∈ C, then

f lies in U ∩ V ∈ C, and ηU([f ]) = ηU∩V ([f ]) = ηV ([f ]) by naturality of η.

Generally, given paths f and g in X with [f ] = [g], suppose we decompose

them as [f ] = [f1 ∗ f2 ∗ ... ∗ fn] and [g] = [g1 ∗ g2 ∗ ... ∗ gm], where each fi is

a path in Ui ∈ C and each gj is a path in Vj ∈ C. We want to prove that

◦ni=1ηUi
([fi]) = ◦mj=1ηVj([gj]).

Since [f ] = [g] we can find a path homotopy H : I × I � X from f to

g. Using the Lebesgue number lemma again we can subdivide I × I into

(mnr)2 sub-squares of equal size such that the image of each Ii × Ij under

H lies entirely in some Wi,j ∈ C.

For i ∈ {1,2,...,mnr} and j ∈ {0,1,...,mnr}, define pi,j : I � X by

pi,j(s) = H(mnrs − i + 1, j
mnr). These paths correspond to horizontal

edges of the sub-squares;

For i ∈ {0,1,...,mnr} and j ∈ {1,2,...,mnr}, define qi,j : I � X by

qi,j(s) = H( i
mnr ,mnrs − j + 1). These paths correspond to vertical edges

of the sub-squares. It follows that

◦ni=1ηUi
([fi]) = ◦mnr

i=1 ηWi,1
([pi,0]) and ◦mj=1ηVj([gj]) = ◦mnr

i=1 ηWi,mnr
([pi,mnr]).

Now it suffices to show that the right hand sides are equal.

We have the following relations:

(a) Observe that for any i, j ∈ {1,2,...,mnr}, pi,j(I) ⊆ Wi,j ∩ Wi,j+1, so

ηWi,j
([pi,j]) = ηWi,j+1

([pi,j]), hence ◦mnr
i=1 ηWi,j

([pi,j]) = ◦mnr
i=1 ηWi,j+1

([pi,j]) for

j ∈ {1,2,...,mnr}. (1.1)
(b) For any j ∈ {0,1,...,mnr}, q0,j+1 ∗ p1,j is homotopic to p1,j+1 ∗ q1,j+1, so

ηW1,j+1
([q0,j+1]) ◦ ηW1,j+1

([p1,j]) = ηW1,j+1
([p1,j+1]) ◦ ηW1,j+1

([q1,j+1])

= ηW1,j+1
([p1,j+1]) ◦ ηW2,j+1

([q1,j+1]). (1.2)

After mnr similar operations we get ◦mnr
i=1 ηWi,j+1

([pi,j]) = ◦mnr
i=1 ηWi,j+1

([pi,j+1]).

(1.3)

Repetitively apply results (a) and (b) to ◦mnr
i=1 ηWi,1

([pi,0]), and we have the

desired equality ◦mnr
i=1 ηWi,1

([pi,0]) = ◦mnr
i=1 ηWi,mnr

([pi,mnr]).
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