THE SEIFERT-VAN KAMPEN THEOREM

Guozhen Wu, supervised by Dr.Nora Ganter, The University of Melbourne

guozhenw@student.unimelb.edu.au

Introduction

The fundamental group is a powerful tool in the study of topological spaces. A natural question arises when we consider the union of spaces: how do we deduce the fundamental group of the union space from the fundamental groups of individual spaces? The Seifert-van Kampen theorem answers the question partially. In particular, if C is an open cover of the space X that is closed under finite intersection, such that each $U \in C$ is path-connected and contains the basepoint $x_0 \in X$, then we can write $\pi_1(X, x_0)$ in terms of the $\pi_1(U, x_0)$'s.

The Fundamental Group Version

Next we try to apply the subdivision trick to fundamental groups to obtain $\pi_1(X, x_0) = colim_{U \in C} \pi_1(U, x_0)$. Here we have a problem: once we subdivide a loop, the subdivisions are no longer loops, but mere paths(2.1). In order to turn them into loops, we have to choose a path from x_0 to each of the end points(2.2). Further more, we want these paths to be in the same elements of C as the corresponding subdivisions, so that every resulting loop also lies in that element.

So for each $U \in C$ we are choosing a path f_y^U from x_0 to every $y \in U$. Categorically, this choice corresponds to a functor

 $F_U: \Pi(U) \to \pi_1(U, x_0) \text{ which sends a morphism } [g]: y \to z \text{ to } [f_y^U * g * \overline{f_z^U}].$ Let $J_U: \pi_1(U, x_0) \to \Pi(U)$ denote the inclusion functor, then since C is finite, we can choose the f_y^U 's such that 1. For any $U \in C$, $f_{x_0}^U$ is the constant path at x_0 2. For any $U, V \in C$, $f_y^U = f_y^V$ if $y \in U \cap V$ $F := \{F_U\}_{U \in C} : \Pi|_{\mathscr{C}} \to \pi_1|_{\mathscr{C}}$ is a natural transformation with $F \circ J = Id$. For every $y \in X$, let $f_y^X = f_y^U$ if $y \in U$. Since C covers X, the f_y^X 's define a functor $F_X: \Pi(X) \to \pi_1(X, x_0)$ with $F_X \circ J_X = Id$. Define $\mu: \pi_1|_{\mathscr{C}} \to \Delta_{\pi_1(X, x_0)}$ to be the natural transformation where components are $\mu_U = \pi_1(i: U \hookrightarrow X)$. A comparison of components gives the following commutative diagrams of functors from \mathscr{C} to *Groupoid*:

The Fundamental Groupoid Version

Before tackling $\pi_1(X, x_0)$, let us consider $\Pi_1(X)$. We can view C as a subcategory \mathscr{C} of Top, where objects are the elements of C with the subspace topology, and morphisms are the inclusion maps. The restriction of the fundamental groupoid functor Π_1 to \mathscr{C} gives a diagram of groupoids, which has the colimit $\Pi_1(X) \cong colim_{U \in \mathscr{C}} \Pi_1(U)$.

To see the result above, given a groupoid GP and natural transformation $\eta: \Pi_1|_{\mathscr{C}} \to \Delta_{GP}(\Delta_{GP} \text{ denotes the constant functor at } GP)$, we want to find a unique $\tilde{\eta}: \Pi_1(X) \to GP$ such that $\tilde{\eta} \circ \gamma = \eta$, where $\gamma: \Pi_1|_{\mathscr{C}} \to \Delta_{\Pi_1(X)}$ is the natural transformation with components $\gamma_U = \Pi_1(i: U \hookrightarrow X)$.

- On objects, we must have $\tilde{\eta}(x) = \eta_U(x)$ for $x \in U \in C$.
- On morphisms, given a path f in X, using the Lebesgue number lemma we can subdivide [0, 1] into n sub-intervals such that the image of each subinterval I_k under f lies in some $U_k \in C$. Reparametrizing each $f|_{I_k}$ to a path f_k , we decompose $[f] = [f_1 * f_2 * ... * f_n] = \circ_{k=1}^n [f_k]$, and $\tilde{\eta}([f]) = \circ_{k=1}^n \tilde{\eta}([f_k]) = \circ_{k=1}^n \eta_{U_k}([f_k]).$

The above proof for uniqueness almost gives a definition for $\tilde{\eta}$. We just need to verify that it is well-defined.

• On objects, if $x \in U \in C$ and $x \in V \in C$, then $x \in U \cap V \in C$, and $\eta_U(x) = \eta_{U \cap V}(x) = \eta_V(x)$ by naturality of η .

• On morphisms, if a path f lies entirely in both $U \in C$ and $V \in C$, then f lies in $U \cap V \in C$, and $\eta_U([f]) = \eta_{U \cap V}([f]) = \eta_V([f])$ by naturality of η . Generally, given paths f and g in X with [f] = [g], suppose we decompose them as $[f] = [f_1 * f_2 * ... * f_n]$ and $[g] = [g_1 * g_2 * ... * g_m]$, where each f_i is a path in $U_i \in C$ and each g_j is a path in $V_j \in C$. We want to prove that $\circ_{i=1}^n \eta_{U_i}([f_i]) = \circ_{j=1}^m \eta_{V_j}([g_j])$.

Since [f] = [g] we can find a path homotopy $H : I \times I \to X$ from f to g. Using the Lebesgue number lemma again we can subdivide $I \times I$ into $(mnr)^2$ sub-squares of equal size such that the image of each $I_i \times I_j$ under H lies entirely in some $W_{i,j} \in C$.

For $i \in \{1, 2, ..., mnr\}$ and $j \in \{0, 1, ..., mnr\}$, define $p_{i,j} : I \to X$ by

combining the results above we have the following:

Given group G and $\xi : \pi_1|_{\mathscr{C}} \to \Delta_G$, let $\eta = \xi \circ F$. By the groupoid version of the theorem, $\exists ! \tilde{\eta} : \Delta_{\Pi(X)} \to \Delta_G \ s.t. \ \tilde{\eta} \circ \gamma = \eta$. Uniqueness: if $\tilde{\xi} \circ \mu = \xi$ then $\tilde{\xi} \circ F_X \circ \gamma = \tilde{\xi} \circ \mu \circ F = \xi \circ F = \eta$, so $\tilde{\xi} \circ F_X = \tilde{\eta}$ and $\tilde{\xi} = \tilde{\eta} \circ J_X$. Existence: $\tilde{\eta} \circ J_X \circ \mu = \tilde{\eta} \circ \gamma \circ J = \eta \circ J = \xi \circ F \circ J = \xi$; Thus $\tilde{\xi} = \tilde{\eta} \circ J_X$ is the unique map of cocones required, $\pi_1(X, x_0) = colim_{U \in C} \pi_1(U, x_0)$. $p_{i,j}(s) = H(mnrs - i + 1, \frac{j}{mnr})$. These paths correspond to horizontal edges of the sub-squares;

For $i \in \{0,1,...,mnr\}$ and $j \in \{1,2,...,mnr\}$, define $q_{i,j} : I \to X$ by $q_{i,j}(s) = H(\frac{i}{mnr}, mnrs - j + 1)$. These paths correspond to vertical edges of the sub-squares. It follows that

 $\circ_{i=1}^{n} \eta_{U_i}([f_i]) = \circ_{i=1}^{mnr} \eta_{W_{i,1}}([p_{i,0}]) \text{ and } \circ_{j=1}^{m} \eta_{V_j}([g_j]) = \circ_{i=1}^{mnr} \eta_{W_{i,mnr}}([p_{i,mnr}]).$ Now it suffices to show that the right hand sides are equal.

We have the following relations:

(a) Observe that for any $i, j \in \{1, 2, ..., mnr\}, p_{i,j}(I) \subseteq W_{i,j} \cap W_{i,j+1}$, so $\eta_{W_{i,j}}([p_{i,j}]) = \eta_{W_{i,j+1}}([p_{i,j}])$, hence $\circ_{i=1}^{mnr} \eta_{W_{i,j}}([p_{i,j}]) = \circ_{i=1}^{mnr} \eta_{W_{i,j+1}}([p_{i,j}])$ for $j \in \{1, 2, ..., mnr\}$. (1.1) (b) For any $j \in \{0, 1, ..., mnr\}, q_{0,j+1} * p_{1,j}$ is homotopic to $p_{1,j+1} * q_{1,j+1}$, so $\eta_{W_{1,j+1}}([q_{0,j+1}]) \circ \eta_{W_{1,j+1}}([p_{1,j}]) = \eta_{W_{1,j+1}}([p_{1,j+1}]) \circ \eta_{W_{1,j+1}}([q_{1,j+1}])$ $= \eta_{W_{1,j+1}}([p_{1,j+1}]) \circ \eta_{W_{2,j+1}}([q_{1,j+1}])$. (1.2) After mnr similar operations we get $\circ_{i=1}^{mnr} \eta_{W_{i,j+1}}([p_{i,j}]) = \circ_{i=1}^{mnr} \eta_{W_{i,j+1}}([p_{i,j+1}])$. (1.3)

Repetitively apply results (a) and (b) to $\circ_{i=1}^{mnr} \eta_{W_{i,1}}([p_{i,0}])$, and we have the desired equality $\circ_{i=1}^{mnr} \eta_{W_{i,1}}([p_{i,0}]) = \circ_{i=1}^{mnr} \eta_{W_{i,mnr}}([p_{i,mnr}])$.

References

May, J.P.(1999). A Concise Course in Algebraic Topology. University of Chicago Press.
Hatcher, A.(2009). Algebraic Topology. Cambridge University Press.