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Introduction

The fundamental group is a powerful tool in the study of topological spaces.
A natural question arises when we consider the union of spaces: how do we
deduce the fundamental group of the union space from the fundamental groups
of individual spaces? The Seifert-van Kampen theorem answers the question
partially. In particular, if C' is an open cover of the space X that is closed
under finite intersection, such that each U € C'is path-connected and contains
the basepoint xy € X, then we can write w1 (X, z¢) in terms of the m (U, x)’s.

The Fundamental Group Version

Next we try to apply the subdivision trick to fundamental groups to obtain
(X, zg) = colimyecmi (U, xp). Here we have a problem: once we subdivide
a loop, the subdivisions are no longer loops, but mere paths(2.1). In order to
turn them into loops, we have to choose a path from zy to each of the end
points(2.2). Further more, we want these paths to be in the same elements of
C as the corresponding subdivisions, so that every resulting loop also lies in
that element.
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So for each U € C' we are choosing a path fyU from zy to every y € U.
Categorically, this choice corresponds to a functor

Fy : I(U) - m(U, x9) which sends a morphism [g] : y = z to [f * g 197.
Let Jy : m(U, o) = II(U) denote the inclusion functor, then since C is finite,
we can choose the fyU 's such that

1. For any U € C, fgo is the constant path at xg

2. ForanyU,VEC,fyU:f;/ fyeUNV

F ={Fy}tvec : ll|l¢ — m|e is a natural transformation with F o J = Id.
For every y € X, let fyX = f;f if y € U. Since C covers X, the fyX’s define a
functor Fx : 11(X) — m (X, xy) with Fiy o Jy = Id. Define

p e — Az (X,) t0 be the natural transformation where components are
py = m(i U — X). A comparison of components gives the following
commutative diagrams of functors from % to Groupoid:
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combining the results above we have the following:
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Given group G and & : 71| = Ag, let n = £ o F. By the groupoid version of
the theorem, 3!7 : Agx) = Ag s.t. noy =n.

Uniqueness: if Eou=E&thenfoFyoy=&opuoF =&o0F =n,s0
EoFy=nand £ =7o Jy.

Existence: no Jyou=noyoJ=noJ=EoFoJ=¢;

Thus 5 = 7 o Jx is the unique map of cocones required,

(X, xg) = colimyecm (U, xp).

The Fundamental Groupoid Version

Before tackling 71 (X, xg), let us consider I1;(X). We can view C' as a sub-
category € of Top, where objects are the elements of C' with the subspace
topology, and morphisms are the inclusion maps. The restriction of the fun-
damental groupoid functor II; to € gives a diagram of groupoids, which has
the colimit I11(X) = colimyexll1(U).
To see the result above, given a groupoid GP and natural transformation
n : Iile = Agp(Agp denotes the constant functor at GP), we want to find
a unique 7 : I1;(X) = G P such that 7j o v = n, where v : IIi|¢ — Ap,(x) is
the natural transformation with components vy = (i : U — X).
e On objects, we must have 7j(z) = ny(x) forx € U € C.
e On morphisms, given a path f in X, using the Lebesgue number lemma
we can subdivide [0, 1] into n sub-intervals such that the image of each sub-
interval I;; under f lies in some U, € C. Reparametrizing each f|; to a
path fi, we decompose [f] = [f1 * fa* ... % f,] = o _{[fx], and

(1) = op_an(lfe]) = of_ymu, ([fk])-
The above proof for uniqueness almost gives a definition for 77. We just need
to verify that it is well-defined.
e On objects, if r e U e Candz € V € C,thenx € UNV € C, and
o (x) = nuav(x) = nv(z) by naturality of 7.
e On morphisms, if a path f lies entirely in both U € C' and V' € C', then

fliesin UNV e C,and ny([f]) = nuav([f]) = nv([f]) by naturality of n.
Generally, given paths f and ¢ in X with [f] = [g], suppose we decompose

them as [f] = [f1 * fo % ... * f] and [g] = [g1 * g2 * ... * g], Where each f; is
a path in U; € C and each g; is a path in V; € C. We want to prove that
ol ynu;(Lfi]) = 0?1:177‘@([93'])-

Since [f] = [g] we can find a path homotopy H : I x [ — X from f to
g. Using the Lebesgue number lemma again we can subdivide I X [ into
(mnr)? sub-squares of equal size such that the image of each I; x I ; under
H lies entirely in some W, ; € C.

For ¢ € {1,2,..,mnr} and j € {0,1,..mnr}, define p;; : I — X by
pij(s) = H(mnrs — i+ 1,-L
edges of the sub-squares;

For ¢ € {0,1,..mnr} and j € {1,2,..mnr}, define ¢;; : I — X by
qij(s) = H(=-,mnrs — j + 1). These paths correspond to vertical edges

mnr’

of the sub-squares. It follows that

). These paths correspond to horizontal

mnr

oinu;([fi]) = oy nw;, ([piol) and ofL my;([g;]) = o1 0w,y ([Pi,irnr])-
Now it suffices to show that the right hand sides are equal.
We have the following relations:

(a) Observe that for any 4,7 € {1,2,...mnr}, p; (1) € W;; N W, i1, so

mnr

77Wi,j<[pi,j]> - an’,jH([pi,j])v hence Oﬁ?ﬁ‘%g(@%]’]) = 9i=1 77Wz',j+1<[pi,j]) for
je {12, . . mnr}. (1.1)

(b) For any j € {0,1,....mnr}, g j+1 * p1; is homotopic to p1 j+1 * g1 j+1, SO
nW1,j+1([QO,j+1]> © 77W1,j+1([]?1,j]) - 77W1,j+1([]91,j+1]) © 77W1,j+1([Q1,j+1]>

- 77W1,j+1<[p1,j+1]> © nWQ,j+1([Q1J+1])' (1.2)
After mnr similar operations we get of'myw, .., ([pij]) = o2V nw, ., ([pij+1]).

(1.3) )
Repetitively apply results (a) and (b) to o™ nw; ,([pio]), and we have the

1=
mnr mnr

desired equality o™} 77W¢,1([pi,0]) = 0, nWi,mm([pi,mnrD-
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