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INTRODUCTION
Quantum physics reveals a fundamental and bizarre
reality, introducing many challenges in understand-
ing the universe. In this project we ask:

How can we efficiently
capture the entanglement

information of a ground state?

In particular, we investigate the matrix product state
(MPS) as a computationally efficient method of rep-
resenting ground states of one-dimensional quantum
spin-chains.
Interestingly, MPS do not always exhibit properties
associated with quantum phase transitions (QPT).

MATRIX PRODUCT STATES
Individual sites in a superposition of d possible states
are modelled by a complex Hilbert space Cd. Tensor
products model the Hilbert space of the whole sys-
tem. The state of the whole system is therefore:

|Ψ⟩ =
∑

i1...iN

ψi1...iN |i1 . . . iN ⟩

Which has a visual representation as a tensor with N
indices representing each site.

i1 i2

Ψ

i3 . . . iN

A MPS has the form and visual representation:

|Ψ⟩ =
∑

i1...iN

Tr[Ai1 . . . AiN ] |i1 . . . iN ⟩
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Where the Ai are χ × χ matrices. The size of χ is a
measure of the entanglement present in the MPS. In
general, MPS with finite χ approximate a system by
limiting entanglement. For finite χ, MPS form a sub-
space of the total Hilbert space:
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EIGENVALUE AND CORRELATION GRAPHS
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Figure 1: Graph of eigenvalues of EI for an example from
[1], the largest eigenvalue changes when g = 0
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Figure 2: Piecewise function for correlations from same ex-
ample from [1]. Derivative will be discontinuous at the crit-
ical point g = gc = 0
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QUANTUM PHASE TRANSITIONS

A QPT occurs at zero temperature, and describes a
sudden change in the ground state of a system as a
physical parameter, such as magnetic field strength
or pressure, is varied.

Often, a nonanalyticity in the ground state energy is
used to define a QPT [2]. However, Wolf et al. show
by construction that MPS are only guaranteed to
satisfy an alternative definition of QPT, namely the
existence of discontinuities in correlations.

To find QPT in MPS we in-
vestigate the correlations

For MPS dependent on a continuous parameter, the
relative size of eigenvalues will change with the
parameter which will therefore affect the correlations.

An example graph of eigenvalues is shown in figure
1. When there is a crossover between different eigen-
value choices, a QPT occurs. Figure 2 shows that a
discontinuity in the limit of the correlation function
coincides with this crossover, identifying the QPT.

AN EXAMPLE
A simple example of the calculations described is
given by the choice of MPS tensors:

A1 =

(
0 0
1 1

)
A2 =

(
1 g
0 0

)
where g is continuous and represents a changing
physical parameter.

Here EI has eigenvalues ν+ = 1 + g and ν− = 1 − g,
graphed in figure 1. An example correlation using σz ,
the observable associated with the spin along the z
axis, is

⟨σz
i σ

z
i+1⟩ =

(
3(1+g)2

1−g

)
(1− g)N + (1− g)(1 + g)N

3(1 + g)(1− g)N + (1 + g)N+1

In the thermodynamic limit (N → ∞) this gives us
the functions:

⟨σz
i σ

z
i+1⟩ν+

=
1− g

1 + g
⟨σz

i σ
z
i+1⟩ν−

=
1 + g

1− g

Graphing these functions over their defined domains
gives figure 2, where the discontinuity in the deriva-
tive at the critical point is clear.

MPS CORRELATIONS
A key element of studying interesting quantum-
mechanical ground states are correlation functions.
Consider m observables Si acting on part of the spin
chain.

In Dirac notation the correlation function is given by:

⟨S1 . . . Sm⟩ = ⟨ψ|S1 . . . Sm |ψ⟩ (†)

This has a visual depiction:
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For MPS we can define a transfer oper-
ator ES =

∑
i,j ⟨i|S |j⟩Aj ⊗ Āi which

can be thought of as a 4-index tensor
that takes ’vertical slices’ of the cor-
relation function. The pictorial form
of a transfer operator is shown on the
right.

By using transfer operators, correlation functions for
MPS can be calculated efficiently using the formula:

⟨S1 . . . Sm⟩ = Tr[EN−m
I ES1

. . . ESm
]

This is equivalent to (†).

The matrix power EI
N−m in the expression can be

calculated by diagonalising the matrix and using
the eigenvalues of EI . The resulting expression will
therefore be a rational function in terms of eigenval-
ues of EI .

Two-point correlations may be considered by setting
the observables S2 = · · · = Sm−1 = I .


