KZ functor for rational Cherednik algebras

Motivation

Both rational Cherednik algebras and IwahoriHecke algebras are structures that appear extensively in the study of representation theory.
Wouldn't it be nice to have a way of linking the two?
Rational Cherednik algebra module

$$
\text { generated by } x, y, t_{w} \quad \text { act on } \mathbb{C}[x]-\operatorname{span}\left\{e_{1}, \ldots, e_{d}\right\}
$$

$\downarrow K Z$ functor [Gin+03]
Iwahori-Hecke algebra module

$$
\text { generated by } T_{s} \quad \text { act on } \mathbb{C} \text {-span }\left\{e_{1}, \ldots, e_{d}\right\}
$$

An answer is the Knizhnik-Zamolodchikov functor.

Complex reflection groups

Let V be a \mathbb{C}-vector space.
A linear transformation s is a complex reflection if it fixes a hyperplane $H \subseteq V$. A complex reflection group W is generated by complex reflections.

Pick a vector α_{s} orthogonal to H, which is also an eigenvector of s. From the dual vector space V^{*}, we then choose $\alpha_{s}^{\vee}: V \rightarrow \mathbb{C}$ such that $\operatorname{ker}\left(\alpha_{s}^{\vee}\right)=H$.

After normalisation, our choice of α_{s} and α_{s}^{\vee} would then satisfy

$$
s x=x-\alpha_{s}^{\vee}(x) \alpha_{s} \quad \forall x \in V .
$$

Rational Cherednik algebras

Let W be a complex reflection group acting on a vector space V.
Let parameter $c_{s} \in \mathbb{C}$ for each reflection $s \in W$, such that $c_{s}=c_{w s w^{-1}}$ for all $w \in W$
Consider the following two very similar algebras:

A rational Cherednik algebra \mathbb{H} is generated by x, y, t_{w} for $x \in V, y \in V^{*}, w \in W$ with

$$
t_{w} x=(w x) t_{w}, \quad t_{w} y=(w y) t_{w}
$$

$y x=x y+\langle x, y\rangle-\sum_{s \in R} c_{s}\left\langle x, \alpha_{s}^{\vee}\right\rangle\left\langle\alpha_{s}, y\right\rangle t_{s} . \quad$ [Gri10]
An algebra $\mathcal{D}(V) \rtimes W$ is generated by x, ∂_{y}, t_{w} for $x \in V, y \in V^{*}, w \in W$ with

$$
t_{w} x=(w x) t_{w}, \quad t_{w} \partial_{y}=\partial_{(w y)} t_{w}
$$

$$
\partial_{y} x=x \partial_{y}+\langle x, y\rangle
$$

Proposition: $\tilde{\mathbb{H}}$ and $\mathcal{D}(V) \rtimes W$ are isomorphic as algebras via

$$
y \mapsto \partial_{y}-\sum_{s \in R} c_{s}\left\langle\alpha_{s}, y\right\rangle \frac{1}{\alpha_{s}}\left(1-t_{s}\right) . \quad[\text { Gin }+03, \text { Theorem 5.6] }
$$

Construct RCA-modules

For each representation (E, π) of W, where $E=\operatorname{span}\left\{e_{1}, \ldots, e_{d}\right\}$ and $\pi: W \rightarrow G L(E)$, a RCA-module can be induced with

$$
\begin{aligned}
& t_{w} e_{j}=\pi(w) e_{j} \\
& y e_{j}=0
\end{aligned} \quad \text { for } j=1,2, \ldots, d .
$$

Each element in the module has the form

$$
p_{1}\left(x_{1}, \ldots, x_{n}\right) e_{1}+\cdots+p_{d}\left(x_{1}, \ldots, x_{n}\right) e_{d} .
$$

Hecke algebras via monodromy

Let $a_{0} \in V$ be a basepoint.
For $j=1,2, \ldots, d$, let f_{j} be an element of a RCA-module such that
$\partial_{y} f_{j}=0 \quad \forall y \in V^{*} \quad$ and $\quad f_{j}\left(a_{0}\right)=e_{j}$.
partial differential equations
initial conditions
For each reflection $s \in W$, define a monodromy matrix

$$
T_{s}=\left(\begin{array}{cc}
\mid & \mid \\
f_{1}\left(s a_{0}\right) & \ldots \\
\mid & f_{d}\left(s a_{0}\right)
\end{array}\right)^{-1}\left(\begin{array}{ll}
\pi(s)
\end{array}\right) .
$$

These matrices satisfy the Hecke relations of the Hecke algebra of W, and hence produces a Hecke module with generators T_{s} acting by the matrices above [Gin+03, Theorem 5.13].

An example: cyclic groups

$$
\begin{aligned}
& \text { Consider a cyclic group of order } r \\
& \qquad W=\left\{1, t, \ldots, t^{r-1} \mid t^{r}=1\right\} \\
& \text { acting on vector space } V=\mathbb{C} .
\end{aligned}
$$

The corresponding RCA $\tilde{\mathbb{H}}$ is generated by x_{1}, y_{1}, t with

$$
\begin{aligned}
& x_{1}=\zeta x_{1} t, t y_{1}=\zeta^{-1} y_{1} t \\
& y_{1} x_{1}=x_{1} y_{1}+1-\sum_{\ell=1}^{r-1} c_{\ell}\left(1-\zeta^{\ell}\right) t^{\ell} \quad \text { where } \zeta=e^{2 \pi i / r}
\end{aligned}
$$

From the RCA-module induced by the regular representation of W, we solve the PDEs to find

$$
f_{j}=a_{0}^{-k_{j}} x_{1}^{k_{j}} e_{j} \quad \text { where } k_{i}=\sum_{\ell=1}^{r-1} c_{\ell}\left(\zeta^{i \ell}-1\right)
$$

Then, the monodromy matrix for reflection $t \in W$ is
$T_{1}=\left[\begin{array}{lll}\zeta^{-k_{0}} & & \\ & \ddots & \\ & & \zeta^{r-1-k_{r-1}}\end{array}\right]$

This produces a Hecke module where the Hecke algebra gen erator T_{1} acts by the matrix above and satisfies Hecke relation

$$
\prod_{j=0}^{r-1}\left(T_{1}-q_{j}\right)=0 \quad \text { with parameters } q_{j}=\zeta^{\left(j-k_{j}\right)}
$$

Acknowledgements

My most sincere thank you to Professor Arun Ram and Dr Ting Xue for introducing me to the fascinating world of representation theory and offering their illuminating guidance and insight. I am grateful for the collaboration with vacation scholar Haris Rao and Dr Yaping Yang in the project. A special thanks to the School of Mathematics and Statistics and AMSI for this invaluable opportunity

References

[Gin+03] V. Ginzburg et al. "On the category \mathcal{O} for rational Cherednik algebras" In: Inventiones Mathematicae 154.2 (2003), pp. 617-651.
In: Inventiones Mathematicae 154.2 (2003), pp. 617-651.
[Gri10] S. Griffeth. "Towards a combinatorial representation theory for the ra tional Cherednik algebra of type $G(r, p, n)$ ". In: Proceedings of the Edinburgh Mathematical Society 53.2 (2010), pp. 419-445.

