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Motivation

Both rational Cherednik algebras and Iwahori-
Hecke algebras are structures that appear exten-
sively in the study of representation theory.

Wouldn’t it be nice to have a way of linking the two?

Rational Cherednik algebra module
generated by x, y, tw act on C[x]-span{e1, . . . , ed}

↧ KZ functor [Gin+03]

Iwahori-Hecke algebra module
generated by Ts act on C-span{e1, . . . , ed}

An answer is the Knizhnik-Zamolodchikov functor.

Complex reflection groups

Let V be a C−vector space.

A linear transformation s is a complex reflection if
it fixes a hyperplane H ⊆ V . A complex reflection
group W is generated by complex reflections.

x
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Pick a vector αs orthogonal to H, which is also an
eigenvector of s. From the dual vector space V ∗, we
then choose α∨s ∶ V → C such that ker(α∨s) =H.

After normalisation, our choice of αs and α∨s would
then satisfy

sx = x − α∨s(x)αs ∀x ∈ V.

Rational Cherednik algebras

Let W be a complex reflection group acting on a vector space V .
Let parameter cs ∈ C for each reflection s ∈W , such that cs = cwsw−1 for all w ∈W .

Consider the following two very similar algebras:

A rational Cherednik algebra H̃ is generated
by x, y, tw for x ∈ V , y ∈ V ∗,w ∈W with

twx = (wx)tw, twy = (wy)tw
yx = xy + ⟨x, y⟩ −∑

s∈R
cs⟨x,α∨s⟩⟨αs, y⟩ts. [Gri10]

An algebra D(V ) ⋊ W is generated by
x, ∂y, tw for x ∈ V , y ∈ V ∗,w ∈W with

twx = (wx)tw, tw∂y = ∂(wy)tw
∂yx = x∂y + ⟨x, y⟩.

Proposition: H̃ and D(V ) ⋊W are isomorphic as algebras via

y ↦ ∂y −∑
s∈R

cs⟨αs, y⟩
1

αs
(1 − ts). [Gin+03, Theorem 5.6]

Construct RCA-modules

For each representation (E,π) of W , where E = span{e1, . . . , ed} and π ∶W → GL(E),
a RCA-module can be induced with

twej = π(w)ej
yej = 0 for j = 1, 2, . . . , d.

Each element in the module has the form

p1(x1,...,xn)e1 +⋯ + pd(x1,...,xn)ed .

Hecke algebras via monodromy

Let a0 ∈ V be a basepoint.
For j = 1, 2, . . . , d, let fj be an element of a RCA-module such that

and∂yfj = 0 ∀y ∈ V ∗

↓

partial differential equations

fj(a0) = ej.

↓

initial conditions

For each reflection s ∈W , define a monodromy matrix

Ts = ( f1(sa0) ... fd(sa0))
−1

( 1 1 1
1 π(s) 1
1 1 1

) .

These matrices satisfy the Hecke relations of the Hecke algebra of W , and hence produces
a Hecke module with generators Ts acting by the matrices above [Gin+03, Theorem 5.13].

An example: cyclic groups
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1 = tr
Consider a cyclic group of order r

W = {1, t, . . . , tr−1 ∣ tr = 1}
acting on vector space V = C.

The corresponding RCA H̃ is generated by x1, y1, t with
x1 = ζx1t, ty1 = ζ−1y1t

y1x1 = x1y1 + 1 −
r−1
∑
ℓ=1

cℓ(1 − ζℓ)tℓ where ζ = e2πi/r.

From the RCA-module induced by the regular representation
of W, we solve the PDEs to find

fj = a
−kj
0 x

kj
1 ej where ki =

r−1
∑
ℓ=1

cℓ(ζ iℓ − 1).

Then, the monodromy matrix for reflection t ∈W is

T1 =
⎡⎢⎢⎢⎢⎢⎣

ζ−k0

⋱
ζr−1−kr−1

⎤⎥⎥⎥⎥⎥⎦
.

This produces a Hecke module where the Hecke algebra gen-
erator T1 acts by the matrix above and satisfies Hecke relation

r−1
∏
j=0
(T1 − qj) = 0 with parameters qj = ζ(j−kj).
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