Publications

Back to staff profile

  • M. Wheeler, P. Zinn-Justin. Hall polynomials, inverse Kostka polynomials and puzzles. Journal of Combinatorial Theory. Series A, 159, 107-163, 2018. doi: 10.1016/j.jcta.2018.05.005.

  • Guillaume Barraquand, Alexei Borodin, Ivan Corwin, M. Wheeler. Stochastic six-vertex model in a half-quadrant and half-line open asymmetric simple exclusion process. Duke Mathematical Journal, 167, 2457-2529, 2018. doi: 10.1215/00127094-2018-0019.

  • A. Garbali, J. de Gier, M. Wheeler. A New Generalisation of Macdonald Polynomials. Communications in Mathematical Physics, 352, 773-804, 2017. doi: 10.1007/s00220-016-2818-1.

  • M. Wheeler, P. Zinn-Justin. Littlewood-Richardson coefficients for Grothendieck polynomials from integrability. Journal fur die Reine und Angewandte Mathematik, 2017. doi: 10.1515/crelle-2017-0033.

  • J. de Gier, M. Wheeler. A Summation Formula for Macdonald Polynomials. Letters in Mathematical Physics, 106, 381-394, 2016. doi: 10.1007/s11005-016-0820-3.

  • Luigi Cantini, A. Garbali, J. de Gier, M. Wheeler. Koornwinder polynomials and the stationary multi-species asymmetric exclusion process with open boundaries. Journal of Physics A: Mathematical and Theoretical, 49, 444002 (23pp), 2016. doi: 10.1088/1751-8113/49/44/444002.

  • M. Wheeler, Paul Zinn-Justin, P. Zinn-Justin. Refined Cauchy/Littlewood identities and six-vertex model partition functions: III. Deformed bosons. Advances in Mathematics, 299, 543-600, 2016. doi: 10.1016/j.aim.2016.05.010.

  • D Betea, M. Wheeler. Refined Cauchy and Littlewood identities, plane partitions and symmetry classes of alternating sign matrices. Journal of Combinatorial Theory Series A, 137, 126-165, 2016. doi: 10.1016/j.jcta.2015.08.007.

  • Luigi Cantini, J. de Gier, M. Wheeler. Matrix product formula for Macdonald polynomials. Journal of Physics A: Mathematical and Theoretical, 48, 384001 (25pp), 2015. doi: 10.1088/1751-8113/48/38/384001.

  • D Betea, M. Wheeler, P Zinn-Justin, P. Zinn-Justin. Refined Cauchy/Littlewood identities and six-vertex model partition functions: II. Proofs and new conjectures. Journal of Algebraic Combinatorics, 42, 555-603, 2015. doi: 10.1007/s10801-015-0592-3.

  • M. Wheeler. Scalar Products in Generalized Models with SU(3)-Symmetry. Communications in Mathematical Physics, 327, 737-777, 2014. doi: 10.1007/s00220-014-2019-8.

  • M. Wheeler. Multiple integral formulae for the scalar product of on-shell and off-shell Bethe vectors in SU(3)-invariant models. Nuclear Physics B, 875, 186-212, 2013. doi: 10.1016/j.nuclphysb.2013.06.015.

  • Y Ikhlef, R. Weston, M. Wheeler, P. Zinn-Justin. Discrete holomorphicity and quantized affine algebras. Journal of Physics A: Mathematical and Theoretical, 46, 265205 (34pp), 2013. doi: 10.1088/1751-8113/46/26/265205.

  • O. Foda, M. Wheeler. Colour-independent partition functions in coloured vertex models. Nuclear Physics, Section B, 871, 330-361, 2013. doi: 10.1016/j.nuclphysb.2013.02.015.

  • O. Foda, M. Wheeler. Slavnov determinants, Yang-Mills structure constants, and discrete KP. 40, 85-132, Springer Verlag, 2013. doi: 10.1007/978-1-4471-4863-0_5.

  • S. McAteer, M. Wheeler. On factorizing F-matrices in Y(sln) and Uq(sln) spin chains. Journal of Statistical Mechanics: Theory and Experiment, 2012, P04016 (37pp), 2012. doi: 10.1088/1742-5468/2012/04/P04016.

  • O. Foda, M. Wheeler. Partial domain wall partition functions. Journal of High Energy Physics, 2012, 2012. doi: 10.1007/JHEP07(2012)186.

  • O. Foda, M. Wheeler. Variations on Slavnov's scalar product. Journal of High Energy Physics, 2012, 2012. doi: 10.1007/JHEP10(2012)096.

  • S. McAteer, M. Wheeler. Factorizing F-matrices and the XXZ spin-1/2 chain: A diagrammatic perspective. Nuclear Physics B, 851, 346-379, 2011. doi: 10.1016/j.nuclphysb.2011.05.019.

  • M. Wheeler. An Izergin-Korepin procedure for calculating scalar products in the six-vertex model. Nuclear Physics B, 852, 468-507, 2011. doi: 10.1016/j.nuclphysb.2011.07.006.

  • M. Wheeler. Free fermions in classical and quantum integrable models. 2010.

  • O. Foda, M. Wheeler. Hall-Littlewood Plane Partitions and KP. International Mathematics Research Notices, 2009, 2597-2619, 2009. doi: 10.1093/imrn/rnp028.

  • O. Foda, M. Wheeler, M. Zuparic. On free fermions and plane partitions. Journal of Algebra, 321, 3249-3273, 2009. doi: 10.1016/j.jalgebra.2008.08.021.

  • O. Foda, M. Wheeler, M. Zuparic. Domain wall partition functions and KP. Journal of Statistical Mechanics: Theory and Experiment, 2009, 017--033, 2009. doi: 10.1088/1742-5468/2009/03/P03017.

  • O. Foda, M. Wheeler, M. Zuparic. XXZ scalar products and KP. Nuclear Physics B, 820, 649--663, 2009. doi: 10.1016/j.nuclphysb.2009.04.019.

  • O. Foda, M. Wheeler, M. Zuparic. Two elliptic height models with factorized domain wall partition functions. Journal of Statistical Mechanics: Theory and Experiment, 2008, P02001 (18pp), 2008. doi: 10.1088/1742-5468/2008/02/P02001.

  • O. Foda, M. Wheeler. BKP plane partitions. Journal of High Energy Physics, 2007, 075 (9pp), 2007. doi: 10.1088/1126-6708/2007/01/075.

  • O. Foda, M. Wheeler, M. Zuparic. Factorized domain wall partition functions in trigonometric vertex models. Journal of Statistical Mechanics: Theory and Experiment, 10, P10016 (15pp), 2007. doi: 10.1088/1742-5468/2007/10/P10016.

  • O. Foda, A. Caradoc, M. Wheeler, M. Zuparic. On the trigonometric Felderhof model with domain wall boundary conditions. Journal of Statistical Mechanics: Theory and Experiment, 2007, P03010 (14pp), 2007. doi: 10.1088/1742-5468/2007/03/P03010.

  • M. Wheeler. An Introduction To Riemann-Hilbert Problems And Their Applications. 2005. PDF.