Dr Thomas QUELLA
Senior Lecturer
School of Mathematics and Statistics
- +61 3 834 46796
- thomas.quella@unimelb.edu.au
- Website https://researchers.ms.unimelb.edu.au/~tquella@unimelb/#home
- Room: 164
- Building: Peter Hall Building
- Campus: Parkville
Research Interests
- Representation Theory and Applications
- Conformal field theory, quantum integrable models
- Topological states of matter, tensor network states
- Lie (super) algebras, diagram algebras, quantum groups
- Quantum many-body physics
Research Groups
Recent Publications
T. Quella, A Roy. Chiral Haldane phases of SU(N) quantum spin chains. Physical review B: Condensed matter and materials physics, 97, 2018. doi: 10.1103/PhysRevB.97.155148.
R Bondesan, T. Quella. Infinite dimensional matrix product states for long-range quantum spin models. Springer Proceedings in Mathematics and Statistics, 191, 337-347, 2016. doi: 10.1007/978-981-10-2636-2_22.
Roberto Bondesan, T. Quella. Infinite matrix product states for long-range SU(N) spin models. Nuclear Physics B, 886, 483-523, 2014. doi: 10.1016/j.nuclphysb.2014.07.002.
Roberto Bondesan, T. Quella. Topological and symmetry broken phases of Z(N) parafermions in one dimension. Journal of Statistical Mechanics - Theory and Experiment, 2013, P10024 (21pp), 2013. doi: 10.1088/1742-5468/2013/10/P10024.
Kasper Duivenvoorden, T. Quella. From symmetry-protected topological order to Landau order. Physical Review B, 88, 2013. doi: 10.1103/PhysRevB.88.125115.
Current Postgraduate Supervision
Name | Thesis title |
---|---|
Allan TRINH | |
Jiyuan ZHANG |
Past Postgraduate Supervision
Name | Thesis title |
---|---|
Tianshu LIU | "Coset construction for the N=2 and osp(1/2) minimal models" |
Steve SIU | "Singular vectors for the WN algebras and the BRST cohomology for relaxed highest-weight Lk(sl(2)) modules" |
Past MSc Students
Name | Project title |
---|---|
William STEWART |
Responsibilities
- BSc Mathematical Physics Major Coordinator
- Maths Physics Seminar Co-Ordinator
Committees
- Engagement and Publicity Committee
- Postgraduate Programs Committee