Prof Jan DE GIER
Head of School
School of Mathematics and Statistics
- +61 3 834 47887
- jdgier@unimelb.edu.au
- Find an Expert profile
- Website http://researchers.ms.unimelb.edu.au/~degier/
- Room: G33 - Head of School Office
- Building: Peter Hall Building
- Campus: Parkville
Research Interests
- Combinatorics
- Integrable models
- Mathematical Physics
- Stochastic Processes
Research Groups
Recent Publications
L. Zhang, C. Finn, T. Garoni, J. de Gier. Behaviour of traffic on a link with traffic light boundaries. Physica A: Statistical Mechanics and its Applications, 503, 116-138, 2018. doi: 10.1016/j.physa.2018.02.201.
Z. Chen, J. de Gier, I Hiki, T. Sasamoto. Exact Confirmation of 1D Nonlinear Fluctuating Hydrodynamics for a Two-Species Exclusion Process. Physical Review Letters, 120, 240601, 2018. doi: 10.1103/PhysRevLett.120.240601.
A. Garbali, J. de Gier, M. Wheeler. A New Generalisation of Macdonald Polynomials. Communications in Mathematical Physics, 352, 773-804, 2017. doi: 10.1007/s00220-016-2818-1.
J. de Gier, Gyorgy Z Feher, Bernard Nienhuis, Magdalena Rusaczonek. Integrable supersymmetric chain without particle conservation. Journal of Statistical Mechanics: Theory and Experiment, 2016, 023104 (28pp), 2016. doi: 10.1088/1742-5468/2016/02/023104.
J. de Gier, M. Wheeler. A Summation Formula for Macdonald Polynomials. Letters in Mathematical Physics, 106, 381-394, 2016. doi: 10.1007/s11005-016-0820-3.
Extra Information
I am interested in solvable lattice models, an area of maths which offers exciting research possibilities in pure as well as applied mathematics. The study of solvable lattice models uses a variety of techniques, ranging from algebraic concepts such as Hecke algebras and quantum groups to analytic methods such as complex analysis and elliptic curves. Due to this wide variety of methods, the study of solvable lattice models often produces unexpected links between different areas of research. Currently I am studying such connections between enumerative combinatorics & statistical mechanics on the one hand, and symmetric polynomials, algebraic geometry & representation theory on the other. Aside from the pure maths aspects of solvable lattice models, they provide useful frameworks for modeling real world phenomena. Examples of solvable lattice models that are widely used in applications are quantum spin chains and ladders as models for metals and superconductivity, random tilings as models for quasicrystals and exclusion processes as models for traffic and fluid flow.
Current Postgraduate Supervision
Name | Thesis title |
---|---|
Zeying CHEN | |
John FOXCROFT | "Combinatorial Enumeration and the Bethe Ansatz" |
Past Postgraduate Supervision
Name | Thesis title |
---|---|
Caley FINN | "The Asymmetric Exclusion Process with Open Boundaries" |
Alexander LEE | "Loop models on random geometries" |
Anthony MAYS | "Eigenvalue distributions in the complex plane" |
Anita PONSAING | "Combinatorial aspects of the quantum Knizhnik - Zamolodchikov equation" |
Maria TSARENKO | "Integrable Random Tiling Models" |
Past MSc Students
Name | Project title |
---|---|
Kayed AL QASEMI | "The Inhomogeneous Asymmetric Simple Exclusion Process" |
Chunhua CHEN | "Schramm-Loewner Evolutions" |
John FOXCROFT | "A Comparative Study of Traffic Models" |
Scott MASON | "Quantum Random Walks" |
Noon SILK | "Minimal resource topological quantum computation" |
Maria TSARENKO | "Discretely Holomorphic Observables and Integrable Loop Models" |
Recent Grant History
Year(s) | Source | Type | Title |
---|---|---|---|
2014 - 2016 | ARC | Discovery | Multivariate polynomials:combinatorics and applications |
2014 - 2016 | ARC | Centre Of Excellence | ARC Centre of Excellence for Mathematical and Statistical Frontiers (ACEMS) |
2012 - 2014 | ARC | Linkage | Modelling large urban transport networks using stochastic cellular automata |
2009 - 2011 | ARC | Discovery | Polynomial representations of the Hecke algebra |
2008 - 2009 | ARC | Linkage International | Hecke algebras and hidden symmetries in quantum spin chains |
2007 - 2011 | ARC | Discovery | Statistical Topology and its Application to Deriving New Geometric Invariants |
Responsibilities
- AMSI representative
- Chair of Management Committee
- Head of School
- MATRIX Director
- School Seminar Coordinator
Committees
- Belz Committee
- Executive Committee
- Management Committee
- Postgraduate Programs Committee
- Strategic Planning Committee